L(s) = 1 | + (1.38 + 0.307i)2-s + (0.600 + 0.346i)3-s + (1.81 + 0.849i)4-s + (1.31 − 2.26i)5-s + (0.721 + 0.663i)6-s + (−1.74 + 3.02i)7-s + (2.23 + 1.72i)8-s + (−1.25 − 2.18i)9-s + (2.50 − 2.72i)10-s + 1.40i·11-s + (0.792 + 1.13i)12-s + (2.32 − 4.01i)13-s + (−3.33 + 3.63i)14-s + (1.57 − 0.908i)15-s + (2.55 + 3.07i)16-s + (−5.28 + 3.05i)17-s + ⋯ |
L(s) = 1 | + (0.976 + 0.217i)2-s + (0.346 + 0.200i)3-s + (0.905 + 0.424i)4-s + (0.586 − 1.01i)5-s + (0.294 + 0.270i)6-s + (−0.659 + 1.14i)7-s + (0.791 + 0.611i)8-s + (−0.419 − 0.727i)9-s + (0.792 − 0.863i)10-s + 0.423i·11-s + (0.228 + 0.328i)12-s + (0.643 − 1.11i)13-s + (−0.891 + 0.970i)14-s + (0.406 − 0.234i)15-s + (0.639 + 0.768i)16-s + (−1.28 + 0.739i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.946 - 0.322i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.946 - 0.322i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.48063 + 0.410407i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.48063 + 0.410407i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.38 - 0.307i)T \) |
| 37 | \( 1 + (-5.70 - 2.11i)T \) |
good | 3 | \( 1 + (-0.600 - 0.346i)T + (1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.31 + 2.26i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (1.74 - 3.02i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 - 1.40iT - 11T^{2} \) |
| 13 | \( 1 + (-2.32 + 4.01i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (5.28 - 3.05i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.73 - 3.00i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 6.02iT - 23T^{2} \) |
| 29 | \( 1 + 6.17T + 29T^{2} \) |
| 31 | \( 1 + 1.36iT - 31T^{2} \) |
| 41 | \( 1 + (3.13 - 5.43i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 - 2.90T + 43T^{2} \) |
| 47 | \( 1 + 8.48T + 47T^{2} \) |
| 53 | \( 1 + (-2.05 + 1.18i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (1.01 + 1.75i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.65 + 11.5i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (4.98 + 2.87i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-3.65 + 6.33i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 10.9T + 73T^{2} \) |
| 79 | \( 1 + (-7.01 - 4.04i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (8.75 - 5.05i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-15.2 + 8.82i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 5.77iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.25378113717474969969874113580, −11.09110060109752651971752475451, −9.820520229351182290515469599168, −8.816258393565583636139253739135, −8.208321342100222656635078606245, −6.31876939747982042737523488771, −5.93493460187933471299012905661, −4.74114983576310228373047573269, −3.45483787091659412040816520353, −2.18428420073383546534032381715,
2.08708520286825404028590084923, 3.20046093370150651325599838647, 4.31782780243944193707275534438, 5.81758027992261027390682364951, 6.83274460223451864176893927996, 7.29114586535581238025060646214, 9.029804402486336708902483711644, 10.14925088000555474356199466593, 11.10136547361690068201498318678, 11.36369881401829730877264854868