L(s) = 1 | + (1.38 − 0.307i)2-s + (0.600 − 0.346i)3-s + (1.81 − 0.849i)4-s + (1.31 + 2.26i)5-s + (0.721 − 0.663i)6-s + (−1.74 − 3.02i)7-s + (2.23 − 1.72i)8-s + (−1.25 + 2.18i)9-s + (2.50 + 2.72i)10-s − 1.40i·11-s + (0.792 − 1.13i)12-s + (2.32 + 4.01i)13-s + (−3.33 − 3.63i)14-s + (1.57 + 0.908i)15-s + (2.55 − 3.07i)16-s + (−5.28 − 3.05i)17-s + ⋯ |
L(s) = 1 | + (0.976 − 0.217i)2-s + (0.346 − 0.200i)3-s + (0.905 − 0.424i)4-s + (0.586 + 1.01i)5-s + (0.294 − 0.270i)6-s + (−0.659 − 1.14i)7-s + (0.791 − 0.611i)8-s + (−0.419 + 0.727i)9-s + (0.792 + 0.863i)10-s − 0.423i·11-s + (0.228 − 0.328i)12-s + (0.643 + 1.11i)13-s + (−0.891 − 0.970i)14-s + (0.406 + 0.234i)15-s + (0.639 − 0.768i)16-s + (−1.28 − 0.739i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.946 + 0.322i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.946 + 0.322i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.48063 - 0.410407i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.48063 - 0.410407i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.38 + 0.307i)T \) |
| 37 | \( 1 + (-5.70 + 2.11i)T \) |
good | 3 | \( 1 + (-0.600 + 0.346i)T + (1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.31 - 2.26i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (1.74 + 3.02i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + 1.40iT - 11T^{2} \) |
| 13 | \( 1 + (-2.32 - 4.01i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (5.28 + 3.05i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.73 + 3.00i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 6.02iT - 23T^{2} \) |
| 29 | \( 1 + 6.17T + 29T^{2} \) |
| 31 | \( 1 - 1.36iT - 31T^{2} \) |
| 41 | \( 1 + (3.13 + 5.43i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 - 2.90T + 43T^{2} \) |
| 47 | \( 1 + 8.48T + 47T^{2} \) |
| 53 | \( 1 + (-2.05 - 1.18i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (1.01 - 1.75i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.65 - 11.5i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (4.98 - 2.87i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-3.65 - 6.33i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 10.9T + 73T^{2} \) |
| 79 | \( 1 + (-7.01 + 4.04i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (8.75 + 5.05i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-15.2 - 8.82i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 5.77iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.36369881401829730877264854868, −11.10136547361690068201498318678, −10.14925088000555474356199466593, −9.029804402486336708902483711644, −7.29114586535581238025060646214, −6.83274460223451864176893927996, −5.81758027992261027390682364951, −4.31782780243944193707275534438, −3.20046093370150651325599838647, −2.08708520286825404028590084923,
2.18428420073383546534032381715, 3.45483787091659412040816520353, 4.74114983576310228373047573269, 5.93493460187933471299012905661, 6.31876939747982042737523488771, 8.208321342100222656635078606245, 8.816258393565583636139253739135, 9.820520229351182290515469599168, 11.09110060109752651971752475451, 12.25378113717474969969874113580