L(s) = 1 | + (0.866 + 0.5i)2-s + (0.866 + 0.5i)3-s + (0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + (0.499 + 0.866i)6-s + 0.999i·8-s + (0.499 + 0.866i)9-s + (0.866 − 0.499i)10-s + 0.999i·12-s + (0.866 − 0.499i)15-s + (−0.5 + 0.866i)16-s + 0.999i·18-s + 0.999·20-s + (−0.866 − 0.5i)23-s + (−0.5 + 0.866i)24-s + (−0.499 − 0.866i)25-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)2-s + (0.866 + 0.5i)3-s + (0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + (0.499 + 0.866i)6-s + 0.999i·8-s + (0.499 + 0.866i)9-s + (0.866 − 0.499i)10-s + 0.999i·12-s + (0.866 − 0.499i)15-s + (−0.5 + 0.866i)16-s + 0.999i·18-s + 0.999·20-s + (−0.866 − 0.5i)23-s + (−0.5 + 0.866i)24-s + (−0.499 − 0.866i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.444 - 0.895i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.444 - 0.895i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.941635305\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.941635305\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 \) |
good | 11 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + 1.73iT - T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + T + T^{2} \) |
| 43 | \( 1 + 1.73T + T^{2} \) |
| 47 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + 1.73T + T^{2} \) |
| 89 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.695496312592729635398206362020, −8.418552313962216999475687935815, −7.67245337723725177571951991086, −6.72101449830145988167287618551, −5.84905343841636601328963188542, −5.10707896975485862670736829097, −4.37217292180684241515694397461, −3.75575972038887152703012109411, −2.63356709781283595671274250554, −1.85236679601173407319708334497,
1.55745997527236133285536457076, 2.22132576484048982284946758877, 3.27431960975081508271738885242, 3.60689110370965663008295093127, 4.87992972609607544174460302970, 5.75200316547925334434837149483, 6.66962177061105130637044725774, 6.97737451437916065325542458711, 7.954992961259606676796309115334, 8.875560631078001665627907992404