L(s) = 1 | + (−0.299 + 1.70i)3-s + (1.67 + 1.48i)5-s + (−2.82 − 1.02i)9-s − 6.04i·11-s − 2.23·13-s + (−3.03 + 2.40i)15-s + 2.64i·17-s − 3.11i·19-s − 3.68·23-s + (0.592 + 4.96i)25-s + (2.58 − 4.50i)27-s − 5.25i·29-s + 4.70i·31-s + (10.3 + 1.80i)33-s − 6.75i·37-s + ⋯ |
L(s) = 1 | + (−0.172 + 0.984i)3-s + (0.747 + 0.663i)5-s + (−0.940 − 0.340i)9-s − 1.82i·11-s − 0.620·13-s + (−0.783 + 0.621i)15-s + 0.640i·17-s − 0.713i·19-s − 0.769·23-s + (0.118 + 0.992i)25-s + (0.497 − 0.867i)27-s − 0.976i·29-s + 0.844i·31-s + (1.79 + 0.314i)33-s − 1.11i·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.491 + 0.870i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.491 + 0.870i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.017921175\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.017921175\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.299 - 1.70i)T \) |
| 5 | \( 1 + (-1.67 - 1.48i)T \) |
| 7 | \( 1 \) |
good | 11 | \( 1 + 6.04iT - 11T^{2} \) |
| 13 | \( 1 + 2.23T + 13T^{2} \) |
| 17 | \( 1 - 2.64iT - 17T^{2} \) |
| 19 | \( 1 + 3.11iT - 19T^{2} \) |
| 23 | \( 1 + 3.68T + 23T^{2} \) |
| 29 | \( 1 + 5.25iT - 29T^{2} \) |
| 31 | \( 1 - 4.70iT - 31T^{2} \) |
| 37 | \( 1 + 6.75iT - 37T^{2} \) |
| 41 | \( 1 + 0.179T + 41T^{2} \) |
| 43 | \( 1 + 11.7iT - 43T^{2} \) |
| 47 | \( 1 + 7.14iT - 47T^{2} \) |
| 53 | \( 1 + 10.7T + 53T^{2} \) |
| 59 | \( 1 + 10.8T + 59T^{2} \) |
| 61 | \( 1 + 10.7iT - 61T^{2} \) |
| 67 | \( 1 - 12.7iT - 67T^{2} \) |
| 71 | \( 1 + 0.839iT - 71T^{2} \) |
| 73 | \( 1 + 3.80T + 73T^{2} \) |
| 79 | \( 1 + 0.107T + 79T^{2} \) |
| 83 | \( 1 + 8.52iT - 83T^{2} \) |
| 89 | \( 1 + 5.52T + 89T^{2} \) |
| 97 | \( 1 - 8.41T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.809145658890531976116795197489, −8.054716167426943347836986016654, −6.96230149670907149646419655138, −6.03270764720392338638862873924, −5.73386853336758167033126815672, −4.80468021745189740447000517327, −3.70335260714327211786015276985, −3.11176815200126990379070565403, −2.11879691784352882617900599336, −0.31386837148899230164433554372,
1.34753003603756027740107321263, 2.00304081858385254257671692518, 2.91574775405473397740028562139, 4.55840804151899155716173682795, 4.93479911533710704284801734363, 5.99129548793339151104985987467, 6.53648242851712449055448804229, 7.53617092462831388012838617731, 7.83510044581970629733328089684, 8.907037524681753333706387589686