L(s) = 1 | + (1.73 − 0.0514i)3-s + (−0.977 + 2.01i)5-s + (2.99 − 0.178i)9-s + 3.03i·11-s − 1.07·13-s + (−1.58 + 3.53i)15-s + 1.57i·17-s − 2.22i·19-s + 6.24·23-s + (−3.08 − 3.93i)25-s + (5.17 − 0.462i)27-s + 5.90i·29-s − 5.73i·31-s + (0.156 + 5.26i)33-s + 5.60i·37-s + ⋯ |
L(s) = 1 | + (0.999 − 0.0296i)3-s + (−0.437 + 0.899i)5-s + (0.998 − 0.0593i)9-s + 0.916i·11-s − 0.298·13-s + (−0.410 + 0.911i)15-s + 0.382i·17-s − 0.511i·19-s + 1.30·23-s + (−0.617 − 0.786i)25-s + (0.996 − 0.0889i)27-s + 1.09i·29-s − 1.02i·31-s + (0.0272 + 0.916i)33-s + 0.920i·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.00127 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.00127 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.284858642\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.284858642\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.73 + 0.0514i)T \) |
| 5 | \( 1 + (0.977 - 2.01i)T \) |
| 7 | \( 1 \) |
good | 11 | \( 1 - 3.03iT - 11T^{2} \) |
| 13 | \( 1 + 1.07T + 13T^{2} \) |
| 17 | \( 1 - 1.57iT - 17T^{2} \) |
| 19 | \( 1 + 2.22iT - 19T^{2} \) |
| 23 | \( 1 - 6.24T + 23T^{2} \) |
| 29 | \( 1 - 5.90iT - 29T^{2} \) |
| 31 | \( 1 + 5.73iT - 31T^{2} \) |
| 37 | \( 1 - 5.60iT - 37T^{2} \) |
| 41 | \( 1 - 7.52T + 41T^{2} \) |
| 43 | \( 1 - 5.71iT - 43T^{2} \) |
| 47 | \( 1 - 6.90iT - 47T^{2} \) |
| 53 | \( 1 + 9.43T + 53T^{2} \) |
| 59 | \( 1 + 10.5T + 59T^{2} \) |
| 61 | \( 1 - 10.0iT - 61T^{2} \) |
| 67 | \( 1 - 5.66iT - 67T^{2} \) |
| 71 | \( 1 - 13.2iT - 71T^{2} \) |
| 73 | \( 1 + 1.42T + 73T^{2} \) |
| 79 | \( 1 + 7.69T + 79T^{2} \) |
| 83 | \( 1 + 9.89iT - 83T^{2} \) |
| 89 | \( 1 + 1.54T + 89T^{2} \) |
| 97 | \( 1 - 1.33T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.977087806159946233561400146381, −8.072621140870130014893450432841, −7.39468285492731209735690047578, −6.99403921525327476932749446815, −6.11002407274426455875308074887, −4.74746376092981094876581050716, −4.20294338144983904500809784843, −3.08303091925248846155891187121, −2.63600081972580956102705919644, −1.42920092110431625999712416986,
0.64867168895656136752093027049, 1.81347253299562540731455337115, 2.99661820936704870149737415152, 3.69156829329291357042673847293, 4.58888321534831897074134916630, 5.29772493212419360867719926551, 6.34287654254118651594727912643, 7.38305793024930602527413137591, 7.87402094917911649206201598379, 8.650456352178281174214132832757