L(s) = 1 | + (−0.299 − 1.70i)3-s + (−1.67 − 1.48i)5-s + (−2.82 + 1.02i)9-s + 6.04i·11-s − 2.23·13-s + (−2.03 + 3.29i)15-s − 2.64i·17-s − 3.11i·19-s + 3.68·23-s + (0.592 + 4.96i)25-s + (2.58 + 4.50i)27-s + 5.25i·29-s + 4.70i·31-s + (10.3 − 1.80i)33-s − 6.75i·37-s + ⋯ |
L(s) = 1 | + (−0.172 − 0.984i)3-s + (−0.747 − 0.663i)5-s + (−0.940 + 0.340i)9-s + 1.82i·11-s − 0.620·13-s + (−0.524 + 0.851i)15-s − 0.640i·17-s − 0.713i·19-s + 0.769·23-s + (0.118 + 0.992i)25-s + (0.497 + 0.867i)27-s + 0.976i·29-s + 0.844i·31-s + (1.79 − 0.314i)33-s − 1.11i·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.758 + 0.651i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.758 + 0.651i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.154058953\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.154058953\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.299 + 1.70i)T \) |
| 5 | \( 1 + (1.67 + 1.48i)T \) |
| 7 | \( 1 \) |
good | 11 | \( 1 - 6.04iT - 11T^{2} \) |
| 13 | \( 1 + 2.23T + 13T^{2} \) |
| 17 | \( 1 + 2.64iT - 17T^{2} \) |
| 19 | \( 1 + 3.11iT - 19T^{2} \) |
| 23 | \( 1 - 3.68T + 23T^{2} \) |
| 29 | \( 1 - 5.25iT - 29T^{2} \) |
| 31 | \( 1 - 4.70iT - 31T^{2} \) |
| 37 | \( 1 + 6.75iT - 37T^{2} \) |
| 41 | \( 1 - 0.179T + 41T^{2} \) |
| 43 | \( 1 + 11.7iT - 43T^{2} \) |
| 47 | \( 1 - 7.14iT - 47T^{2} \) |
| 53 | \( 1 - 10.7T + 53T^{2} \) |
| 59 | \( 1 - 10.8T + 59T^{2} \) |
| 61 | \( 1 + 10.7iT - 61T^{2} \) |
| 67 | \( 1 - 12.7iT - 67T^{2} \) |
| 71 | \( 1 - 0.839iT - 71T^{2} \) |
| 73 | \( 1 + 3.80T + 73T^{2} \) |
| 79 | \( 1 + 0.107T + 79T^{2} \) |
| 83 | \( 1 - 8.52iT - 83T^{2} \) |
| 89 | \( 1 - 5.52T + 89T^{2} \) |
| 97 | \( 1 - 8.41T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.720742704854805837815193425596, −7.64094009365961220711137655529, −7.13949052361922206333463927239, −6.86183500151107866681150624104, −5.29729731414838363226439015500, −5.02458874838447084636539646483, −4.02824901312327212388776254502, −2.76577919893507873871043615602, −1.87330065620029638246530530134, −0.69980186045769938265778366716,
0.60716998933602878763544488995, 2.59848190743511317277100152746, 3.37188651147554402659020565948, 3.96060382671571209474156516374, 4.86989822886677494903446720512, 5.89759141286376297181729408703, 6.29376809284573661689082980211, 7.45005749226013050046451918155, 8.282966016344078918503005633043, 8.664384503527730249846995841118