Properties

Label 2-2940-105.104-c1-0-24
Degree $2$
Conductor $2940$
Sign $-0.172 - 0.985i$
Analytic cond. $23.4760$
Root an. cond. $4.84520$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.726 + 1.57i)3-s + (2.19 − 0.411i)5-s + (−1.94 − 2.28i)9-s + 1.72i·11-s + 1.24·13-s + (−0.951 + 3.75i)15-s + 4.75i·17-s − 4.23i·19-s − 2.60·23-s + (4.66 − 1.80i)25-s + (5.00 − 1.39i)27-s + 2.97i·29-s − 0.179i·31-s + (−2.71 − 1.25i)33-s + 5.41i·37-s + ⋯
L(s)  = 1  + (−0.419 + 0.907i)3-s + (0.982 − 0.183i)5-s + (−0.647 − 0.761i)9-s + 0.520i·11-s + 0.344·13-s + (−0.245 + 0.969i)15-s + 1.15i·17-s − 0.971i·19-s − 0.543·23-s + (0.932 − 0.361i)25-s + (0.963 − 0.268i)27-s + 0.552i·29-s − 0.0322i·31-s + (−0.472 − 0.218i)33-s + 0.890i·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.172 - 0.985i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.172 - 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2940\)    =    \(2^{2} \cdot 3 \cdot 5 \cdot 7^{2}\)
Sign: $-0.172 - 0.985i$
Analytic conductor: \(23.4760\)
Root analytic conductor: \(4.84520\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2940} (1469, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2940,\ (\ :1/2),\ -0.172 - 0.985i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.684236065\)
\(L(\frac12)\) \(\approx\) \(1.684236065\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (0.726 - 1.57i)T \)
5 \( 1 + (-2.19 + 0.411i)T \)
7 \( 1 \)
good11 \( 1 - 1.72iT - 11T^{2} \)
13 \( 1 - 1.24T + 13T^{2} \)
17 \( 1 - 4.75iT - 17T^{2} \)
19 \( 1 + 4.23iT - 19T^{2} \)
23 \( 1 + 2.60T + 23T^{2} \)
29 \( 1 - 2.97iT - 29T^{2} \)
31 \( 1 + 0.179iT - 31T^{2} \)
37 \( 1 - 5.41iT - 37T^{2} \)
41 \( 1 - 1.41T + 41T^{2} \)
43 \( 1 - 8.03iT - 43T^{2} \)
47 \( 1 - 7.87iT - 47T^{2} \)
53 \( 1 - 6.64T + 53T^{2} \)
59 \( 1 - 2.07T + 59T^{2} \)
61 \( 1 + 9.34iT - 61T^{2} \)
67 \( 1 - 9.46iT - 67T^{2} \)
71 \( 1 - 8.56iT - 71T^{2} \)
73 \( 1 + 15.6T + 73T^{2} \)
79 \( 1 - 0.643T + 79T^{2} \)
83 \( 1 + 4.73iT - 83T^{2} \)
89 \( 1 - 8.25T + 89T^{2} \)
97 \( 1 - 16.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.934994789200192770762057230635, −8.591234375152413497090526334723, −7.38884954044478253869252777676, −6.30407041427257302880608458310, −6.02062503253888657079881525998, −4.99424611215892309435269743433, −4.47207610460542154589916965490, −3.44407129978116208111378998851, −2.41169897012424740600039109865, −1.20327733287964630818564382183, 0.60184003112781034886479722102, 1.78859097445759338543841156676, 2.54240823111235867778907461339, 3.62758415286897282952409270638, 4.94524800859443424911365638485, 5.75846637118913591017842834910, 6.09766545377349774828614155160, 7.03233048558560673327873879385, 7.61354475873703298143374708901, 8.568605116229358232364202459595

Graph of the $Z$-function along the critical line