L(s) = 1 | + (1.14 − 1.29i)3-s + (0.933 + 2.03i)5-s + (−0.372 − 2.97i)9-s + 2.01i·11-s − 3.28·13-s + (3.70 + 1.11i)15-s + 1.71i·17-s + 4.80i·19-s + 1.36·23-s + (−3.25 + 3.79i)25-s + (−4.29 − 2.92i)27-s + 2.21i·29-s + 3.56i·31-s + (2.62 + 2.31i)33-s + 11.2i·37-s + ⋯ |
L(s) = 1 | + (0.661 − 0.749i)3-s + (0.417 + 0.908i)5-s + (−0.124 − 0.992i)9-s + 0.608i·11-s − 0.910·13-s + (0.957 + 0.288i)15-s + 0.416i·17-s + 1.10i·19-s + 0.284·23-s + (−0.651 + 0.758i)25-s + (−0.826 − 0.563i)27-s + 0.412i·29-s + 0.640i·31-s + (0.456 + 0.402i)33-s + 1.84i·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.434 - 0.900i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.434 - 0.900i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.008281141\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.008281141\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.14 + 1.29i)T \) |
| 5 | \( 1 + (-0.933 - 2.03i)T \) |
| 7 | \( 1 \) |
good | 11 | \( 1 - 2.01iT - 11T^{2} \) |
| 13 | \( 1 + 3.28T + 13T^{2} \) |
| 17 | \( 1 - 1.71iT - 17T^{2} \) |
| 19 | \( 1 - 4.80iT - 19T^{2} \) |
| 23 | \( 1 - 1.36T + 23T^{2} \) |
| 29 | \( 1 - 2.21iT - 29T^{2} \) |
| 31 | \( 1 - 3.56iT - 31T^{2} \) |
| 37 | \( 1 - 11.2iT - 37T^{2} \) |
| 41 | \( 1 - 8.97T + 41T^{2} \) |
| 43 | \( 1 + 4.39iT - 43T^{2} \) |
| 47 | \( 1 + 2.50iT - 47T^{2} \) |
| 53 | \( 1 + 2.08T + 53T^{2} \) |
| 59 | \( 1 + 1.46T + 59T^{2} \) |
| 61 | \( 1 - 12.5iT - 61T^{2} \) |
| 67 | \( 1 - 2.94iT - 67T^{2} \) |
| 71 | \( 1 + 14.8iT - 71T^{2} \) |
| 73 | \( 1 + 1.55T + 73T^{2} \) |
| 79 | \( 1 - 9.62T + 79T^{2} \) |
| 83 | \( 1 - 14.2iT - 83T^{2} \) |
| 89 | \( 1 - 16.2T + 89T^{2} \) |
| 97 | \( 1 - 0.657T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.862789969717942078849389591531, −7.934248486086143126901159885718, −7.41186904000260455094520336274, −6.71241609067051343878144835540, −6.10657425537355816667003399897, −5.10686353426405500159809025633, −3.93237524666513122681599019460, −3.05748891782098562650392614735, −2.29230875639304842322205736023, −1.42430336304151915579977810173,
0.55894648353203519553872966139, 2.13011159530608620879177679758, 2.83496356539328443617306003354, 3.98680191954094410952427041389, 4.72096822236787388676983925397, 5.31783457299019737068777245676, 6.16602504105289461730117445098, 7.37960600368498545546376197720, 7.962023628845535923267287311175, 8.832021198390066501779331125744