L(s) = 1 | + (−1.69 + 0.367i)3-s + (2.03 + 0.916i)5-s + (2.73 − 1.24i)9-s + 5.87i·11-s + 3.54·13-s + (−3.78 − 0.802i)15-s + 3.10i·17-s + 4.13i·19-s − 7.15·23-s + (3.31 + 3.74i)25-s + (−4.16 + 3.10i)27-s − 6.84i·29-s + 4.50i·31-s + (−2.15 − 9.94i)33-s + 1.97i·37-s + ⋯ |
L(s) = 1 | + (−0.977 + 0.212i)3-s + (0.912 + 0.410i)5-s + (0.910 − 0.414i)9-s + 1.77i·11-s + 0.981·13-s + (−0.978 − 0.207i)15-s + 0.753i·17-s + 0.949i·19-s − 1.49·23-s + (0.663 + 0.748i)25-s + (−0.801 + 0.598i)27-s − 1.27i·29-s + 0.809i·31-s + (−0.375 − 1.73i)33-s + 0.324i·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.603 - 0.797i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.603 - 0.797i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.327260788\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.327260788\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.69 - 0.367i)T \) |
| 5 | \( 1 + (-2.03 - 0.916i)T \) |
| 7 | \( 1 \) |
good | 11 | \( 1 - 5.87iT - 11T^{2} \) |
| 13 | \( 1 - 3.54T + 13T^{2} \) |
| 17 | \( 1 - 3.10iT - 17T^{2} \) |
| 19 | \( 1 - 4.13iT - 19T^{2} \) |
| 23 | \( 1 + 7.15T + 23T^{2} \) |
| 29 | \( 1 + 6.84iT - 29T^{2} \) |
| 31 | \( 1 - 4.50iT - 31T^{2} \) |
| 37 | \( 1 - 1.97iT - 37T^{2} \) |
| 41 | \( 1 - 6.33T + 41T^{2} \) |
| 43 | \( 1 + 3.88iT - 43T^{2} \) |
| 47 | \( 1 - 1.83iT - 47T^{2} \) |
| 53 | \( 1 + 13.8T + 53T^{2} \) |
| 59 | \( 1 - 4.65T + 59T^{2} \) |
| 61 | \( 1 - 0.810iT - 61T^{2} \) |
| 67 | \( 1 + 10.2iT - 67T^{2} \) |
| 71 | \( 1 + 1.18iT - 71T^{2} \) |
| 73 | \( 1 - 2.17T + 73T^{2} \) |
| 79 | \( 1 - 10.1T + 79T^{2} \) |
| 83 | \( 1 - 5.31iT - 83T^{2} \) |
| 89 | \( 1 + 12.5T + 89T^{2} \) |
| 97 | \( 1 - 4.50T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.369044020799544135691075672910, −8.146548952991872836575463826519, −7.40340906809515798726698377519, −6.34250898709465716481501317595, −6.20867946632782792583514734436, −5.27724570052950313840827678017, −4.37597374087048837651446748089, −3.67274918981243342093899571999, −2.12160601127196522749533008268, −1.47134464768857381383061410493,
0.50002982736570822726404947608, 1.39756740260406915762462426549, 2.63910908257178204441560678152, 3.79302309049127332582431922431, 4.82363768242129383267612570404, 5.61042569722257214551269668106, 6.08044753709613753052314805403, 6.65742505653582293303601791397, 7.74818816795762551350968791911, 8.555442167381627357043521633493