L(s) = 1 | + (−0.939 − 1.62i)3-s + (−0.173 + 0.300i)5-s + (0.939 − 0.342i)7-s + (−1.26 + 2.19i)9-s + 13-s + 0.652·15-s + (−0.766 − 1.32i)17-s + (−1.43 − 1.20i)21-s + (0.439 + 0.761i)25-s + 2.87·27-s + (−0.5 − 0.866i)31-s + (−0.0603 + 0.342i)35-s + (0.939 − 1.62i)37-s + (−0.939 − 1.62i)39-s − 0.347·43-s + ⋯ |
L(s) = 1 | + (−0.939 − 1.62i)3-s + (−0.173 + 0.300i)5-s + (0.939 − 0.342i)7-s + (−1.26 + 2.19i)9-s + 13-s + 0.652·15-s + (−0.766 − 1.32i)17-s + (−1.43 − 1.20i)21-s + (0.439 + 0.761i)25-s + 2.87·27-s + (−0.5 − 0.866i)31-s + (−0.0603 + 0.342i)35-s + (0.939 − 1.62i)37-s + (−0.939 − 1.62i)39-s − 0.347·43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.592 + 0.805i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.592 + 0.805i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8829806419\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8829806419\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-0.939 + 0.342i)T \) |
| 13 | \( 1 - T \) |
good | 3 | \( 1 + (0.939 + 1.62i)T + (-0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + (0.173 - 0.300i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (0.766 + 1.32i)T + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.939 + 1.62i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + 0.347T + T^{2} \) |
| 47 | \( 1 + (-0.766 + 1.32i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + 1.53T + T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.453931892045779256912304649856, −7.55778838504746284147080619599, −7.28359127427842327190374622957, −6.53145787190464579358688306184, −5.70248027103083624734694541947, −5.09230149151264956807245671893, −4.03306674595143819329618201619, −2.60813367613237543960410316128, −1.74071724294216539730130331108, −0.70066610543839740004695365543,
1.35085236258982846614393319354, 2.98739050687758346227149299459, 4.09687123705724491273729275554, 4.44742862178986267091640556491, 5.24114537335889273936726588300, 5.99689163070152377415474535956, 6.55322136402297821022327294312, 8.038972168187291765764862193090, 8.665340244582914457324717439475, 9.115852557113457270685953190876