Properties

Label 2912.1.ci.b
Level $2912$
Weight $1$
Character orbit 2912.ci
Analytic conductor $1.453$
Analytic rank $0$
Dimension $6$
Projective image $D_{9}$
CM discriminant -104
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2912,1,Mod(207,2912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2912, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 4, 3])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2912.207"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2912.ci (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,0,0,0,0,-3,0,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.45327731679\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{18})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 728)
Projective image: \(D_{9}\)
Projective field: Galois closure of 9.1.13763268972544.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + ( - \zeta_{18}^{8} + \zeta_{18}^{7}) q^{3} + (\zeta_{18}^{8} + \zeta_{18}^{4}) q^{5} + \zeta_{18}^{5} q^{7} + ( - \zeta_{18}^{7} + \cdots - \zeta_{18}^{5}) q^{9} + q^{13} + (\zeta_{18}^{7} + \cdots - \zeta_{18}^{2}) q^{15}+ \cdots + ( - \zeta_{18}^{2} + \zeta_{18}) q^{93}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{9} + 6 q^{13} + 6 q^{15} - 3 q^{21} - 3 q^{25} + 6 q^{27} - 3 q^{31} - 6 q^{35} + 3 q^{45} - 3 q^{51} + 3 q^{63} + 6 q^{75} - 3 q^{81} - 6 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(-1\) \(\zeta_{18}^{6}\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
207.1
−0.766044 0.642788i
0.939693 0.342020i
−0.173648 + 0.984808i
−0.766044 + 0.642788i
0.939693 + 0.342020i
−0.173648 0.984808i
0 −0.939693 + 1.62760i 0 −0.173648 0.300767i 0 0.939693 + 0.342020i 0 −1.26604 2.19285i 0
207.2 0 0.173648 0.300767i 0 −0.766044 1.32683i 0 −0.173648 0.984808i 0 0.439693 + 0.761570i 0
207.3 0 0.766044 1.32683i 0 0.939693 + 1.62760i 0 −0.766044 + 0.642788i 0 −0.673648 1.16679i 0
1871.1 0 −0.939693 1.62760i 0 −0.173648 + 0.300767i 0 0.939693 0.342020i 0 −1.26604 + 2.19285i 0
1871.2 0 0.173648 + 0.300767i 0 −0.766044 + 1.32683i 0 −0.173648 + 0.984808i 0 0.439693 0.761570i 0
1871.3 0 0.766044 + 1.32683i 0 0.939693 1.62760i 0 −0.766044 0.642788i 0 −0.673648 + 1.16679i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 207.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
104.h odd 2 1 CM by \(\Q(\sqrt{-26}) \)
7.c even 3 1 inner
728.bs odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2912.1.ci.b 6
4.b odd 2 1 728.1.bs.a 6
7.c even 3 1 inner 2912.1.ci.b 6
8.b even 2 1 728.1.bs.b yes 6
8.d odd 2 1 2912.1.ci.a 6
13.b even 2 1 2912.1.ci.a 6
28.g odd 6 1 728.1.bs.a 6
52.b odd 2 1 728.1.bs.b yes 6
56.k odd 6 1 2912.1.ci.a 6
56.p even 6 1 728.1.bs.b yes 6
91.r even 6 1 2912.1.ci.a 6
104.e even 2 1 728.1.bs.a 6
104.h odd 2 1 CM 2912.1.ci.b 6
364.bl odd 6 1 728.1.bs.b yes 6
728.bs odd 6 1 inner 2912.1.ci.b 6
728.cj even 6 1 728.1.bs.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
728.1.bs.a 6 4.b odd 2 1
728.1.bs.a 6 28.g odd 6 1
728.1.bs.a 6 104.e even 2 1
728.1.bs.a 6 728.cj even 6 1
728.1.bs.b yes 6 8.b even 2 1
728.1.bs.b yes 6 52.b odd 2 1
728.1.bs.b yes 6 56.p even 6 1
728.1.bs.b yes 6 364.bl odd 6 1
2912.1.ci.a 6 8.d odd 2 1
2912.1.ci.a 6 13.b even 2 1
2912.1.ci.a 6 56.k odd 6 1
2912.1.ci.a 6 91.r even 6 1
2912.1.ci.b 6 1.a even 1 1 trivial
2912.1.ci.b 6 7.c even 3 1 inner
2912.1.ci.b 6 104.h odd 2 1 CM
2912.1.ci.b 6 728.bs odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} + 3T_{5}^{4} + 2T_{5}^{3} + 9T_{5}^{2} + 3T_{5} + 1 \) acting on \(S_{1}^{\mathrm{new}}(2912, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + 3 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{6} + 3 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{6} - T^{3} + 1 \) Copy content Toggle raw display
$11$ \( T^{6} \) Copy content Toggle raw display
$13$ \( (T - 1)^{6} \) Copy content Toggle raw display
$17$ \( T^{6} + 3 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{6} \) Copy content Toggle raw display
$23$ \( T^{6} \) Copy content Toggle raw display
$29$ \( T^{6} \) Copy content Toggle raw display
$31$ \( (T^{2} + T + 1)^{3} \) Copy content Toggle raw display
$37$ \( T^{6} + 3 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$41$ \( T^{6} \) Copy content Toggle raw display
$43$ \( (T^{3} - 3 T - 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + 3 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$53$ \( T^{6} \) Copy content Toggle raw display
$59$ \( T^{6} \) Copy content Toggle raw display
$61$ \( T^{6} \) Copy content Toggle raw display
$67$ \( T^{6} \) Copy content Toggle raw display
$71$ \( (T^{3} - 3 T - 1)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} \) Copy content Toggle raw display
$79$ \( T^{6} \) Copy content Toggle raw display
$83$ \( T^{6} \) Copy content Toggle raw display
$89$ \( T^{6} \) Copy content Toggle raw display
$97$ \( T^{6} \) Copy content Toggle raw display
show more
show less