L(s) = 1 | + (−0.5 − 0.866i)3-s − 5-s + (0.5 − 0.866i)7-s + (−0.5 + 0.866i)13-s + (0.5 + 0.866i)15-s + (1 − 1.73i)19-s − 0.999·21-s + (−0.5 − 0.866i)23-s − 27-s + (−0.5 + 0.866i)35-s + 0.999·39-s + (−0.499 − 0.866i)49-s − 1.99·57-s + (−0.5 + 0.866i)59-s + (0.5 − 0.866i)61-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)3-s − 5-s + (0.5 − 0.866i)7-s + (−0.5 + 0.866i)13-s + (0.5 + 0.866i)15-s + (1 − 1.73i)19-s − 0.999·21-s + (−0.5 − 0.866i)23-s − 27-s + (−0.5 + 0.866i)35-s + 0.999·39-s + (−0.499 − 0.866i)49-s − 1.99·57-s + (−0.5 + 0.866i)59-s + (0.5 − 0.866i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.964 + 0.265i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.964 + 0.265i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6106815354\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6106815354\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (0.5 - 0.866i)T \) |
good | 3 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + T + T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + 2T + T^{2} \) |
| 83 | \( 1 + 2T + T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.392321911832344609577633383455, −7.60735608985001073705742734953, −7.07790622551070176670164476830, −6.71176405334994841082024049733, −5.54533193705122803380408472379, −4.52082181158414397346474637062, −4.07882246868866358876862425681, −2.83891088804203553756896529860, −1.55178590512465365259516325780, −0.42222309126660199384717566941,
1.67830505357173914396711680693, 3.05114283979726726854812904867, 3.86506417585201058261209289149, 4.62076945894747996870930458912, 5.57090629017642053251071850377, 5.74314054025628627869151192986, 7.28383110894695504202636867993, 7.889848428297629865573737666616, 8.336661709220891967036241552878, 9.494911706228323779794393358226