L(s) = 1 | + (−0.866 + 0.5i)3-s + (0.866 + 0.5i)5-s − 7-s + (−0.5 − 0.866i)11-s − i·13-s − 0.999·15-s + (−0.5 − 0.866i)17-s + (−0.5 + 0.866i)19-s + (0.866 − 0.5i)21-s + (0.866 + 0.5i)23-s − i·27-s − 2·29-s + (−0.5 − 0.866i)31-s + (0.866 + 0.499i)33-s + (−0.866 − 0.5i)35-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)3-s + (0.866 + 0.5i)5-s − 7-s + (−0.5 − 0.866i)11-s − i·13-s − 0.999·15-s + (−0.5 − 0.866i)17-s + (−0.5 + 0.866i)19-s + (0.866 − 0.5i)21-s + (0.866 + 0.5i)23-s − i·27-s − 2·29-s + (−0.5 − 0.866i)31-s + (0.866 + 0.499i)33-s + (−0.866 − 0.5i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.197 + 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.197 + 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3488982246\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3488982246\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + T \) |
| 13 | \( 1 + iT \) |
good | 3 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + 2T + T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.990119941322849515940564298206, −7.88834741391844893581569521344, −7.10072183825322856261424391943, −6.13132281315134269402456213948, −5.69024094068057858222615895968, −5.24481603004707322515779495712, −3.91134631304932155851177665696, −3.07055693500595947810915855912, −2.18081425909681132959020909403, −0.22976991926940190060396467814,
1.48776760909397146447648582571, 2.34516782241220873097103135638, 3.63962184067883071937350991156, 4.70675071485074325148338161944, 5.45874583482999725797307134991, 6.14790080510796345298794301244, 6.85239806231753941012932892978, 7.21750428414303577109340021964, 8.671381296291605357173894482746, 9.213512185208611898340578314129