Properties

Label 2912.1.dj.a
Level $2912$
Weight $1$
Character orbit 2912.dj
Analytic conductor $1.453$
Analytic rank $0$
Dimension $4$
Projective image $A_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2912,1,Mod(415,2912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2912, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 2, 3])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2912.415"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2912.dj (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-4,0,0,0,-2,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.45327731679\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(A_{4}\)
Projective field: Galois closure of 4.0.529984.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{12} q^{3} - \zeta_{12}^{5} q^{5} - q^{7} + \zeta_{12}^{4} q^{11} + \zeta_{12}^{3} q^{13} - q^{15} + \zeta_{12}^{4} q^{17} - \zeta_{12}^{2} q^{19} + \zeta_{12} q^{21} - \zeta_{12}^{5} q^{23} + \cdots - \zeta_{12} q^{95} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{7} - 2 q^{11} - 4 q^{15} - 2 q^{17} - 2 q^{19} - 8 q^{29} - 2 q^{31} + 2 q^{39} + 2 q^{47} + 4 q^{49} + 2 q^{53} - 2 q^{59} - 2 q^{61} + 2 q^{65} - 2 q^{67} - 4 q^{69} + 2 q^{77} + 2 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(1\) \(-\zeta_{12}^{2}\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
415.1
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
0 −0.866025 + 0.500000i 0 0.866025 + 0.500000i 0 −1.00000 0 0 0
415.2 0 0.866025 0.500000i 0 −0.866025 0.500000i 0 −1.00000 0 0 0
1663.1 0 −0.866025 0.500000i 0 0.866025 0.500000i 0 −1.00000 0 0 0
1663.2 0 0.866025 + 0.500000i 0 −0.866025 + 0.500000i 0 −1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner
52.b odd 2 1 inner
364.bl odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2912.1.dj.a 4
4.b odd 2 1 2912.1.dj.c yes 4
7.c even 3 1 inner 2912.1.dj.a 4
13.b even 2 1 2912.1.dj.c yes 4
28.g odd 6 1 2912.1.dj.c yes 4
52.b odd 2 1 inner 2912.1.dj.a 4
91.r even 6 1 2912.1.dj.c yes 4
364.bl odd 6 1 inner 2912.1.dj.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2912.1.dj.a 4 1.a even 1 1 trivial
2912.1.dj.a 4 7.c even 3 1 inner
2912.1.dj.a 4 52.b odd 2 1 inner
2912.1.dj.a 4 364.bl odd 6 1 inner
2912.1.dj.c yes 4 4.b odd 2 1
2912.1.dj.c yes 4 13.b even 2 1
2912.1.dj.c yes 4 28.g odd 6 1
2912.1.dj.c yes 4 91.r even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2912, [\chi])\):

\( T_{11}^{2} + T_{11} + 1 \) Copy content Toggle raw display
\( T_{17}^{2} + T_{17} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$7$ \( (T + 1)^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$29$ \( (T + 2)^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$79$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less