L(s) = 1 | − 2-s − 0.367·3-s + 4-s + (1.82 − 1.29i)5-s + 0.367·6-s − 2.99i·7-s − 8-s − 2.86·9-s + (−1.82 + 1.29i)10-s − 1.08i·11-s − 0.367·12-s + 1.37i·13-s + 2.99i·14-s + (−0.671 + 0.474i)15-s + 16-s + 0.212·17-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.212·3-s + 0.5·4-s + (0.816 − 0.576i)5-s + 0.150·6-s − 1.13i·7-s − 0.353·8-s − 0.954·9-s + (−0.577 + 0.407i)10-s − 0.328i·11-s − 0.106·12-s + 0.381i·13-s + 0.800i·14-s + (−0.173 + 0.122i)15-s + 0.250·16-s + 0.0514·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 290 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.132 + 0.991i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 290 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.132 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.647549 - 0.566822i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.647549 - 0.566822i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 5 | \( 1 + (-1.82 + 1.29i)T \) |
| 29 | \( 1 + (-2.49 + 4.77i)T \) |
good | 3 | \( 1 + 0.367T + 3T^{2} \) |
| 7 | \( 1 + 2.99iT - 7T^{2} \) |
| 11 | \( 1 + 1.08iT - 11T^{2} \) |
| 13 | \( 1 - 1.37iT - 13T^{2} \) |
| 17 | \( 1 - 0.212T + 17T^{2} \) |
| 19 | \( 1 + 6.70iT - 19T^{2} \) |
| 23 | \( 1 - 1.06iT - 23T^{2} \) |
| 31 | \( 1 + 4.22iT - 31T^{2} \) |
| 37 | \( 1 + 5.72T + 37T^{2} \) |
| 41 | \( 1 - 10.3iT - 41T^{2} \) |
| 43 | \( 1 - 10.8T + 43T^{2} \) |
| 47 | \( 1 - 6.38T + 47T^{2} \) |
| 53 | \( 1 - 10.0iT - 53T^{2} \) |
| 59 | \( 1 + 5.28T + 59T^{2} \) |
| 61 | \( 1 - 3.38iT - 61T^{2} \) |
| 67 | \( 1 + 10.2iT - 67T^{2} \) |
| 71 | \( 1 + 5.04T + 71T^{2} \) |
| 73 | \( 1 - 3.51T + 73T^{2} \) |
| 79 | \( 1 - 8.85iT - 79T^{2} \) |
| 83 | \( 1 - 12.4iT - 83T^{2} \) |
| 89 | \( 1 - 2.95iT - 89T^{2} \) |
| 97 | \( 1 + 16.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.28963513008889981483110204438, −10.67117935974092545478227118523, −9.578224413202366087279501393899, −8.900436459372365368412246868576, −7.83500915007048640119504076535, −6.68724773420441089158934972771, −5.73990482455273332912497868679, −4.43911639623123619597724518165, −2.63907201912815907265136640822, −0.833987592404233600089786474684,
2.01666477860100381709347468096, 3.14734344746912834847124415031, 5.45377011019652203525098385428, 5.96821580463601350395530094190, 7.14881999930121473340304843052, 8.455951638064548399870273991987, 9.098706740663143011489319631608, 10.21375252254506214225932155853, 10.81907446763011072663952975608, 12.01396576552712369837294241926