L(s) = 1 | + (−0.222 − 0.974i)2-s + (−0.577 − 0.278i)3-s + (−0.900 + 0.433i)4-s + (−1.06 + 1.96i)5-s + (−0.142 + 0.625i)6-s + (1.73 − 3.60i)7-s + (0.623 + 0.781i)8-s + (−1.61 − 2.02i)9-s + (2.15 + 0.600i)10-s + (−0.710 − 0.566i)11-s + 0.641·12-s + (−4.16 − 3.32i)13-s + (−3.90 − 0.890i)14-s + (1.16 − 0.839i)15-s + (0.623 − 0.781i)16-s − 0.839·17-s + ⋯ |
L(s) = 1 | + (−0.157 − 0.689i)2-s + (−0.333 − 0.160i)3-s + (−0.450 + 0.216i)4-s + (−0.476 + 0.879i)5-s + (−0.0582 + 0.255i)6-s + (0.656 − 1.36i)7-s + (0.220 + 0.276i)8-s + (−0.538 − 0.674i)9-s + (0.681 + 0.189i)10-s + (−0.214 − 0.170i)11-s + 0.185·12-s + (−1.15 − 0.921i)13-s + (−1.04 − 0.238i)14-s + (0.300 − 0.216i)15-s + (0.155 − 0.195i)16-s − 0.203·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 290 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.887 + 0.461i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 290 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.887 + 0.461i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.153694 - 0.628154i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.153694 - 0.628154i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.222 + 0.974i)T \) |
| 5 | \( 1 + (1.06 - 1.96i)T \) |
| 29 | \( 1 + (-4.71 - 2.59i)T \) |
good | 3 | \( 1 + (0.577 + 0.278i)T + (1.87 + 2.34i)T^{2} \) |
| 7 | \( 1 + (-1.73 + 3.60i)T + (-4.36 - 5.47i)T^{2} \) |
| 11 | \( 1 + (0.710 + 0.566i)T + (2.44 + 10.7i)T^{2} \) |
| 13 | \( 1 + (4.16 + 3.32i)T + (2.89 + 12.6i)T^{2} \) |
| 17 | \( 1 + 0.839T + 17T^{2} \) |
| 19 | \( 1 + (1.47 + 3.05i)T + (-11.8 + 14.8i)T^{2} \) |
| 23 | \( 1 + (0.675 + 0.154i)T + (20.7 + 9.97i)T^{2} \) |
| 31 | \( 1 + (-0.378 + 0.0863i)T + (27.9 - 13.4i)T^{2} \) |
| 37 | \( 1 + (-0.732 - 0.918i)T + (-8.23 + 36.0i)T^{2} \) |
| 41 | \( 1 + 8.57iT - 41T^{2} \) |
| 43 | \( 1 + (1.61 - 7.08i)T + (-38.7 - 18.6i)T^{2} \) |
| 47 | \( 1 + (-4.26 + 5.35i)T + (-10.4 - 45.8i)T^{2} \) |
| 53 | \( 1 + (5.56 - 1.27i)T + (47.7 - 22.9i)T^{2} \) |
| 59 | \( 1 - 13.8T + 59T^{2} \) |
| 61 | \( 1 + (-4.46 + 9.27i)T + (-38.0 - 47.6i)T^{2} \) |
| 67 | \( 1 + (0.110 - 0.0877i)T + (14.9 - 65.3i)T^{2} \) |
| 71 | \( 1 + (1.67 - 2.10i)T + (-15.7 - 69.2i)T^{2} \) |
| 73 | \( 1 + (1.01 - 4.45i)T + (-65.7 - 31.6i)T^{2} \) |
| 79 | \( 1 + (7.26 - 5.79i)T + (17.5 - 77.0i)T^{2} \) |
| 83 | \( 1 + (-4.98 - 10.3i)T + (-51.7 + 64.8i)T^{2} \) |
| 89 | \( 1 + (-3.98 + 0.910i)T + (80.1 - 38.6i)T^{2} \) |
| 97 | \( 1 + (-10.6 + 5.13i)T + (60.4 - 75.8i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.26345277358708805402134549714, −10.64202136143490385248562175615, −9.923951458546242199303284073285, −8.453786522968863588330026907673, −7.51253212620424923870505379310, −6.69779727060218979057361931272, −5.08931520286035759225781116252, −3.87691365601716682812420154846, −2.71410743974975653619585995861, −0.51897880636746638546812580183,
2.19515833676134668108166345760, 4.51561064633830058295367074357, 5.12501852502993292232244624959, 6.07021999131075182640252569476, 7.58481206085459698474568049595, 8.386137492935632211308037975283, 9.049628908215871082381104779449, 10.15620419345315576955378450031, 11.60479701702542440843329778839, 11.97137049232661956126138974706