sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(290, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([7,13]))
pari:[g,chi] = znchar(Mod(109,290))
\(\chi_{290}(9,\cdot)\)
\(\chi_{290}(109,\cdot)\)
\(\chi_{290}(129,\cdot)\)
\(\chi_{290}(149,\cdot)\)
\(\chi_{290}(179,\cdot)\)
\(\chi_{290}(209,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((117,31)\) → \((-1,e\left(\frac{13}{14}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
\( \chi_{ 290 }(109, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(1\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{3}{7}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)