Properties

Label 2-286650-1.1-c1-0-103
Degree $2$
Conductor $286650$
Sign $1$
Analytic cond. $2288.91$
Root an. cond. $47.8425$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s + 2·11-s + 13-s + 16-s − 5·17-s − 4·19-s − 2·22-s − 3·23-s − 26-s + 8·29-s − 31-s − 32-s + 5·34-s + 6·37-s + 4·38-s − 3·41-s + 10·43-s + 2·44-s + 3·46-s − 3·47-s + 52-s − 8·58-s − 2·61-s + 62-s + 64-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s + 0.603·11-s + 0.277·13-s + 1/4·16-s − 1.21·17-s − 0.917·19-s − 0.426·22-s − 0.625·23-s − 0.196·26-s + 1.48·29-s − 0.179·31-s − 0.176·32-s + 0.857·34-s + 0.986·37-s + 0.648·38-s − 0.468·41-s + 1.52·43-s + 0.301·44-s + 0.442·46-s − 0.437·47-s + 0.138·52-s − 1.05·58-s − 0.256·61-s + 0.127·62-s + 1/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 286650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 286650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(286650\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(2288.91\)
Root analytic conductor: \(47.8425\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 286650,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.713835863\)
\(L(\frac12)\) \(\approx\) \(1.713835863\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 3 T + p T^{2} \) 1.79.d
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + T + p T^{2} \) 1.89.b
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.62740209640697, −12.26357997170410, −11.71012912490091, −11.18464674100838, −10.97792466823721, −10.41539385378563, −9.916775651460498, −9.525071658119185, −8.894998189285026, −8.684911914769228, −8.147570128752052, −7.748506827047646, −7.026734324958598, −6.668589935251454, −6.215293242547741, −5.899556639469472, −5.055119556323281, −4.482628272471372, −4.104535957651687, −3.507369536773015, −2.761856968864695, −2.255795780465861, −1.797787742696117, −0.9859375615715374, −0.4519340955070770, 0.4519340955070770, 0.9859375615715374, 1.797787742696117, 2.255795780465861, 2.761856968864695, 3.507369536773015, 4.104535957651687, 4.482628272471372, 5.055119556323281, 5.899556639469472, 6.215293242547741, 6.668589935251454, 7.026734324958598, 7.748506827047646, 8.147570128752052, 8.684911914769228, 8.894998189285026, 9.525071658119185, 9.916775651460498, 10.41539385378563, 10.97792466823721, 11.18464674100838, 11.71012912490091, 12.26357997170410, 12.62740209640697

Graph of the $Z$-function along the critical line