L(s) = 1 | + (0.366 − 1.36i)2-s + (−0.866 + 1.5i)3-s + (−1.73 − i)4-s + (−1.5 + 0.866i)5-s + (1.73 + 1.73i)6-s + (1.73 − 2i)7-s + (−2 + 1.99i)8-s + (0.633 + 2.36i)10-s + (−0.866 − 0.5i)11-s + (3 − 1.73i)12-s − 3.46i·13-s + (−2.09 − 3.09i)14-s − 3i·15-s + (1.99 + 3.46i)16-s + (−1.5 − 0.866i)17-s + ⋯ |
L(s) = 1 | + (0.258 − 0.965i)2-s + (−0.499 + 0.866i)3-s + (−0.866 − 0.5i)4-s + (−0.670 + 0.387i)5-s + (0.707 + 0.707i)6-s + (0.654 − 0.755i)7-s + (−0.707 + 0.707i)8-s + (0.200 + 0.748i)10-s + (−0.261 − 0.150i)11-s + (0.866 − 0.499i)12-s − 0.960i·13-s + (−0.560 − 0.827i)14-s − 0.774i·15-s + (0.499 + 0.866i)16-s + (−0.363 − 0.210i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 28 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.832 + 0.553i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.832 + 0.553i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.595521 - 0.179974i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.595521 - 0.179974i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.366 + 1.36i)T \) |
| 7 | \( 1 + (-1.73 + 2i)T \) |
good | 3 | \( 1 + (0.866 - 1.5i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (1.5 - 0.866i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (0.866 + 0.5i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 3.46iT - 13T^{2} \) |
| 17 | \( 1 + (1.5 + 0.866i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.59 - 4.5i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (0.866 - 0.5i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 4T + 29T^{2} \) |
| 31 | \( 1 + (-0.866 + 1.5i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (1.5 + 2.59i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 3.46iT - 41T^{2} \) |
| 43 | \( 1 + 2iT - 43T^{2} \) |
| 47 | \( 1 + (4.33 + 7.5i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.5 + 0.866i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.59 + 4.5i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.5 - 2.59i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.59 + 1.5i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 14iT - 71T^{2} \) |
| 73 | \( 1 + (-7.5 - 4.33i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (7.79 - 4.5i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 13.8T + 83T^{2} \) |
| 89 | \( 1 + (-13.5 + 7.79i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 17.3iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.32693724329760583976165417435, −15.87819465554784721739364562836, −14.71893569724865312437462693754, −13.40630963850504944178987305132, −11.76458414434093393874729517241, −10.81906248416036932328431871622, −10.02830839705813508541350777870, −7.948113451221559700796396614690, −5.21055972755172199076251286197, −3.79023935525388777841933541037,
4.72839043081946664752190802459, 6.41992193808807162362530336494, 7.74188899548957632199770281072, 9.025421267076234067385984904885, 11.67827119083028944990220808552, 12.43600940000912869275370860664, 13.76327518727332126738488530270, 15.18593175098594480682106124261, 16.10913315156939780936170302631, 17.52777971902752659332508962174