L(s) = 1 | + (0.366 − 1.36i)2-s + (−0.866 + 1.5i)3-s + (−1.73 − i)4-s + (−1.5 + 0.866i)5-s + (1.73 + 1.73i)6-s + (1.73 − 2i)7-s + (−2 + 1.99i)8-s + (0.633 + 2.36i)10-s + (−0.866 − 0.5i)11-s + (3 − 1.73i)12-s − 3.46i·13-s + (−2.09 − 3.09i)14-s − 3i·15-s + (1.99 + 3.46i)16-s + (−1.5 − 0.866i)17-s + ⋯ |
L(s) = 1 | + (0.258 − 0.965i)2-s + (−0.499 + 0.866i)3-s + (−0.866 − 0.5i)4-s + (−0.670 + 0.387i)5-s + (0.707 + 0.707i)6-s + (0.654 − 0.755i)7-s + (−0.707 + 0.707i)8-s + (0.200 + 0.748i)10-s + (−0.261 − 0.150i)11-s + (0.866 − 0.499i)12-s − 0.960i·13-s + (−0.560 − 0.827i)14-s − 0.774i·15-s + (0.499 + 0.866i)16-s + (−0.363 − 0.210i)17-s + ⋯ |
Λ(s)=(=(28s/2ΓC(s)L(s)(0.832+0.553i)Λ(2−s)
Λ(s)=(=(28s/2ΓC(s+1/2)L(s)(0.832+0.553i)Λ(1−s)
Degree: |
2 |
Conductor: |
28
= 22⋅7
|
Sign: |
0.832+0.553i
|
Analytic conductor: |
0.223581 |
Root analytic conductor: |
0.472843 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ28(3,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 28, ( :1/2), 0.832+0.553i)
|
Particular Values
L(1) |
≈ |
0.595521−0.179974i |
L(21) |
≈ |
0.595521−0.179974i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.366+1.36i)T |
| 7 | 1+(−1.73+2i)T |
good | 3 | 1+(0.866−1.5i)T+(−1.5−2.59i)T2 |
| 5 | 1+(1.5−0.866i)T+(2.5−4.33i)T2 |
| 11 | 1+(0.866+0.5i)T+(5.5+9.52i)T2 |
| 13 | 1+3.46iT−13T2 |
| 17 | 1+(1.5+0.866i)T+(8.5+14.7i)T2 |
| 19 | 1+(−2.59−4.5i)T+(−9.5+16.4i)T2 |
| 23 | 1+(0.866−0.5i)T+(11.5−19.9i)T2 |
| 29 | 1−4T+29T2 |
| 31 | 1+(−0.866+1.5i)T+(−15.5−26.8i)T2 |
| 37 | 1+(1.5+2.59i)T+(−18.5+32.0i)T2 |
| 41 | 1−3.46iT−41T2 |
| 43 | 1+2iT−43T2 |
| 47 | 1+(4.33+7.5i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−0.5+0.866i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−2.59+4.5i)T+(−29.5−51.0i)T2 |
| 61 | 1+(4.5−2.59i)T+(30.5−52.8i)T2 |
| 67 | 1+(2.59+1.5i)T+(33.5+58.0i)T2 |
| 71 | 1−14iT−71T2 |
| 73 | 1+(−7.5−4.33i)T+(36.5+63.2i)T2 |
| 79 | 1+(7.79−4.5i)T+(39.5−68.4i)T2 |
| 83 | 1−13.8T+83T2 |
| 89 | 1+(−13.5+7.79i)T+(44.5−77.0i)T2 |
| 97 | 1−17.3iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−17.32693724329760583976165417435, −15.87819465554784721739364562836, −14.71893569724865312437462693754, −13.40630963850504944178987305132, −11.76458414434093393874729517241, −10.81906248416036932328431871622, −10.02830839705813508541350777870, −7.948113451221559700796396614690, −5.21055972755172199076251286197, −3.79023935525388777841933541037,
4.72839043081946664752190802459, 6.41992193808807162362530336494, 7.74188899548957632199770281072, 9.025421267076234067385984904885, 11.67827119083028944990220808552, 12.43600940000912869275370860664, 13.76327518727332126738488530270, 15.18593175098594480682106124261, 16.10913315156939780936170302631, 17.52777971902752659332508962174