L(s) = 1 | + (0.366 + 1.36i)2-s + (−0.866 − 1.5i)3-s + (−1.73 + i)4-s + (−1.5 − 0.866i)5-s + (1.73 − 1.73i)6-s + (1.73 + 2i)7-s + (−2 − 1.99i)8-s + (0.633 − 2.36i)10-s + (−0.866 + 0.5i)11-s + (3 + 1.73i)12-s + 3.46i·13-s + (−2.09 + 3.09i)14-s + 3i·15-s + (1.99 − 3.46i)16-s + (−1.5 + 0.866i)17-s + ⋯ |
L(s) = 1 | + (0.258 + 0.965i)2-s + (−0.499 − 0.866i)3-s + (−0.866 + 0.5i)4-s + (−0.670 − 0.387i)5-s + (0.707 − 0.707i)6-s + (0.654 + 0.755i)7-s + (−0.707 − 0.707i)8-s + (0.200 − 0.748i)10-s + (−0.261 + 0.150i)11-s + (0.866 + 0.499i)12-s + 0.960i·13-s + (−0.560 + 0.827i)14-s + 0.774i·15-s + (0.499 − 0.866i)16-s + (−0.363 + 0.210i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 28 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.832 - 0.553i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.832 - 0.553i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.595521 + 0.179974i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.595521 + 0.179974i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.366 - 1.36i)T \) |
| 7 | \( 1 + (-1.73 - 2i)T \) |
good | 3 | \( 1 + (0.866 + 1.5i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (1.5 + 0.866i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (0.866 - 0.5i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 3.46iT - 13T^{2} \) |
| 17 | \( 1 + (1.5 - 0.866i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.59 + 4.5i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.866 + 0.5i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 4T + 29T^{2} \) |
| 31 | \( 1 + (-0.866 - 1.5i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.5 - 2.59i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 3.46iT - 41T^{2} \) |
| 43 | \( 1 - 2iT - 43T^{2} \) |
| 47 | \( 1 + (4.33 - 7.5i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.5 - 0.866i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.59 - 4.5i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4.5 + 2.59i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.59 - 1.5i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 14iT - 71T^{2} \) |
| 73 | \( 1 + (-7.5 + 4.33i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (7.79 + 4.5i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 13.8T + 83T^{2} \) |
| 89 | \( 1 + (-13.5 - 7.79i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 17.3iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.52777971902752659332508962174, −16.10913315156939780936170302631, −15.18593175098594480682106124261, −13.76327518727332126738488530270, −12.43600940000912869275370860664, −11.67827119083028944990220808552, −9.025421267076234067385984904885, −7.74188899548957632199770281072, −6.41992193808807162362530336494, −4.72839043081946664752190802459,
3.79023935525388777841933541037, 5.21055972755172199076251286197, 7.948113451221559700796396614690, 10.02830839705813508541350777870, 10.81906248416036932328431871622, 11.76458414434093393874729517241, 13.40630963850504944178987305132, 14.71893569724865312437462693754, 15.87819465554784721739364562836, 17.32693724329760583976165417435