Properties

Label 2-273e2-1.1-c1-0-41
Degree $2$
Conductor $74529$
Sign $-1$
Analytic cond. $595.117$
Root an. cond. $24.3950$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s − 5-s − 2·10-s − 2·11-s − 4·16-s + 19-s − 2·20-s − 4·22-s − 3·23-s − 4·25-s + 5·29-s + 9·31-s − 8·32-s + 2·38-s − 2·41-s − 43-s − 4·44-s − 6·46-s − 3·47-s − 8·50-s + 9·53-s + 2·55-s + 10·58-s + 2·61-s + 18·62-s − 8·64-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s − 0.447·5-s − 0.632·10-s − 0.603·11-s − 16-s + 0.229·19-s − 0.447·20-s − 0.852·22-s − 0.625·23-s − 4/5·25-s + 0.928·29-s + 1.61·31-s − 1.41·32-s + 0.324·38-s − 0.312·41-s − 0.152·43-s − 0.603·44-s − 0.884·46-s − 0.437·47-s − 1.13·50-s + 1.23·53-s + 0.269·55-s + 1.31·58-s + 0.256·61-s + 2.28·62-s − 64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74529 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74529 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(74529\)    =    \(3^{2} \cdot 7^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(595.117\)
Root analytic conductor: \(24.3950\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 74529,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
7 \( 1 \)
13 \( 1 \)
good2 \( 1 - p T + p T^{2} \) 1.2.ac
5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 15 T + p T^{2} \) 1.73.ap
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 - 17 T + p T^{2} \) 1.89.ar
97 \( 1 - 3 T + p T^{2} \) 1.97.ad
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.16940022725485, −13.67569689279427, −13.50866085297756, −12.92563388596723, −12.28153052839424, −11.90597011905642, −11.69148434370937, −11.01052534976701, −10.30039800315468, −10.03318026840079, −9.249339856673781, −8.644589782165219, −8.069108301389665, −7.644100532010595, −6.942926425563668, −6.346591180774055, −5.985239448002013, −5.292918641339022, −4.794919321382419, −4.360409525888555, −3.715956871114792, −3.229236285202131, −2.566671165788765, −2.047285907757490, −0.9302119741686822, 0, 0.9302119741686822, 2.047285907757490, 2.566671165788765, 3.229236285202131, 3.715956871114792, 4.360409525888555, 4.794919321382419, 5.292918641339022, 5.985239448002013, 6.346591180774055, 6.942926425563668, 7.644100532010595, 8.069108301389665, 8.644589782165219, 9.249339856673781, 10.03318026840079, 10.30039800315468, 11.01052534976701, 11.69148434370937, 11.90597011905642, 12.28153052839424, 12.92563388596723, 13.50866085297756, 13.67569689279427, 14.16940022725485

Graph of the $Z$-function along the critical line