Properties

Label 2-273e2-1.1-c1-0-10
Degree $2$
Conductor $74529$
Sign $1$
Analytic cond. $595.117$
Root an. cond. $24.3950$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s − 3·5-s − 6·10-s − 4·16-s + 2·17-s + 19-s − 6·20-s − 23-s + 4·25-s − 5·29-s + 5·31-s − 8·32-s + 4·34-s − 8·37-s + 2·38-s + 10·41-s − 9·43-s − 2·46-s + 7·47-s + 8·50-s − 9·53-s − 10·58-s − 4·59-s + 8·61-s + 10·62-s − 8·64-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s − 1.34·5-s − 1.89·10-s − 16-s + 0.485·17-s + 0.229·19-s − 1.34·20-s − 0.208·23-s + 4/5·25-s − 0.928·29-s + 0.898·31-s − 1.41·32-s + 0.685·34-s − 1.31·37-s + 0.324·38-s + 1.56·41-s − 1.37·43-s − 0.294·46-s + 1.02·47-s + 1.13·50-s − 1.23·53-s − 1.31·58-s − 0.520·59-s + 1.02·61-s + 1.27·62-s − 64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74529 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74529 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(74529\)    =    \(3^{2} \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(595.117\)
Root analytic conductor: \(24.3950\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 74529,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.099654548\)
\(L(\frac12)\) \(\approx\) \(2.099654548\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
7 \( 1 \)
13 \( 1 \)
good2 \( 1 - p T + p T^{2} \) 1.2.ac
5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 9 T + p T^{2} \) 1.43.j
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 - 15 T + p T^{2} \) 1.79.ap
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.07898189251715, −13.64934355069845, −13.02242367197663, −12.51847280158610, −12.20081723035853, −11.75695280265293, −11.24383932298141, −10.94671156736158, −10.11202598574834, −9.607486936502123, −8.819704291677852, −8.466818018937462, −7.646240280872952, −7.451973002837997, −6.730058359345898, −6.192080910306395, −5.566733913157831, −5.061450444237424, −4.475158622370265, −3.991715787248406, −3.519279076647089, −3.047347415438057, −2.346430518745990, −1.419164067453768, −0.3729346894048540, 0.3729346894048540, 1.419164067453768, 2.346430518745990, 3.047347415438057, 3.519279076647089, 3.991715787248406, 4.475158622370265, 5.061450444237424, 5.566733913157831, 6.192080910306395, 6.730058359345898, 7.451973002837997, 7.646240280872952, 8.466818018937462, 8.819704291677852, 9.607486936502123, 10.11202598574834, 10.94671156736158, 11.24383932298141, 11.75695280265293, 12.20081723035853, 12.51847280158610, 13.02242367197663, 13.64934355069845, 14.07898189251715

Graph of the $Z$-function along the critical line