L(s) = 1 | + (−0.667 + 0.385i)2-s + (1.00 − 1.40i)3-s + (−0.702 + 1.21i)4-s + (0.907 − 1.57i)5-s + (−0.130 + 1.32i)6-s + (1.94 + 1.78i)7-s − 2.62i·8-s + (−0.964 − 2.84i)9-s + 1.39i·10-s − 0.582i·11-s + (1.00 + 2.21i)12-s + (3.53 + 0.728i)13-s + (−1.99 − 0.442i)14-s + (−1.29 − 2.86i)15-s + (−0.392 − 0.680i)16-s + (−0.479 + 0.829i)17-s + ⋯ |
L(s) = 1 | + (−0.472 + 0.272i)2-s + (0.582 − 0.812i)3-s + (−0.351 + 0.608i)4-s + (0.405 − 0.703i)5-s + (−0.0534 + 0.542i)6-s + (0.736 + 0.676i)7-s − 0.928i·8-s + (−0.321 − 0.946i)9-s + 0.442i·10-s − 0.175i·11-s + (0.289 + 0.640i)12-s + (0.979 + 0.201i)13-s + (−0.532 − 0.118i)14-s + (−0.335 − 0.739i)15-s + (−0.0982 − 0.170i)16-s + (−0.116 + 0.201i)17-s + ⋯ |
Λ(s)=(=(273s/2ΓC(s)L(s)(0.924+0.381i)Λ(2−s)
Λ(s)=(=(273s/2ΓC(s+1/2)L(s)(0.924+0.381i)Λ(1−s)
Degree: |
2 |
Conductor: |
273
= 3⋅7⋅13
|
Sign: |
0.924+0.381i
|
Analytic conductor: |
2.17991 |
Root analytic conductor: |
1.47645 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ273(152,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 273, ( :1/2), 0.924+0.381i)
|
Particular Values
L(1) |
≈ |
1.23893−0.245804i |
L(21) |
≈ |
1.23893−0.245804i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.00+1.40i)T |
| 7 | 1+(−1.94−1.78i)T |
| 13 | 1+(−3.53−0.728i)T |
good | 2 | 1+(0.667−0.385i)T+(1−1.73i)T2 |
| 5 | 1+(−0.907+1.57i)T+(−2.5−4.33i)T2 |
| 11 | 1+0.582iT−11T2 |
| 17 | 1+(0.479−0.829i)T+(−8.5−14.7i)T2 |
| 19 | 1+1.92iT−19T2 |
| 23 | 1+(−7.56+4.36i)T+(11.5−19.9i)T2 |
| 29 | 1+(4.26+2.46i)T+(14.5+25.1i)T2 |
| 31 | 1+(2.83−1.63i)T+(15.5−26.8i)T2 |
| 37 | 1+(−0.899−1.55i)T+(−18.5+32.0i)T2 |
| 41 | 1+(1.73−2.99i)T+(−20.5−35.5i)T2 |
| 43 | 1+(0.367+0.636i)T+(−21.5+37.2i)T2 |
| 47 | 1+(3.49−6.04i)T+(−23.5−40.7i)T2 |
| 53 | 1+(5.08−2.93i)T+(26.5−45.8i)T2 |
| 59 | 1+(3.82−6.63i)T+(−29.5−51.0i)T2 |
| 61 | 1+3.82iT−61T2 |
| 67 | 1+10.1T+67T2 |
| 71 | 1+(9.73−5.61i)T+(35.5−61.4i)T2 |
| 73 | 1+(7.30−4.21i)T+(36.5−63.2i)T2 |
| 79 | 1+(−6.35+11.0i)T+(−39.5−68.4i)T2 |
| 83 | 1+7.45T+83T2 |
| 89 | 1+(−3.53−6.12i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−7.89+4.55i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.04334004527806081916628514999, −11.03398019559357400820056911598, −9.254935268324535892143078858510, −8.879832234993674837023570151229, −8.208396182165102195658060637800, −7.18687780586697514311254323271, −6.02057761827621362786964614838, −4.60973647788387696773095062365, −3.04760545010185883509705610455, −1.35852628583970183163368662436,
1.73803409946488639742259150939, 3.37145380624365688802916653994, 4.70638243720170058813576881453, 5.72152385873393635558762176657, 7.27841047933777935161175039345, 8.414886900834145846961739005827, 9.241545126563646949685915696871, 10.13242778402532643362276544386, 10.85770069933285304219087981356, 11.26728406463004315963429472070