L(s) = 1 | + (−0.667 + 0.385i)2-s + (1.00 − 1.40i)3-s + (−0.702 + 1.21i)4-s + (0.907 − 1.57i)5-s + (−0.130 + 1.32i)6-s + (1.94 + 1.78i)7-s − 2.62i·8-s + (−0.964 − 2.84i)9-s + 1.39i·10-s − 0.582i·11-s + (1.00 + 2.21i)12-s + (3.53 + 0.728i)13-s + (−1.99 − 0.442i)14-s + (−1.29 − 2.86i)15-s + (−0.392 − 0.680i)16-s + (−0.479 + 0.829i)17-s + ⋯ |
L(s) = 1 | + (−0.472 + 0.272i)2-s + (0.582 − 0.812i)3-s + (−0.351 + 0.608i)4-s + (0.405 − 0.703i)5-s + (−0.0534 + 0.542i)6-s + (0.736 + 0.676i)7-s − 0.928i·8-s + (−0.321 − 0.946i)9-s + 0.442i·10-s − 0.175i·11-s + (0.289 + 0.640i)12-s + (0.979 + 0.201i)13-s + (−0.532 − 0.118i)14-s + (−0.335 − 0.739i)15-s + (−0.0982 − 0.170i)16-s + (−0.116 + 0.201i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.924 + 0.381i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.924 + 0.381i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.23893 - 0.245804i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.23893 - 0.245804i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.00 + 1.40i)T \) |
| 7 | \( 1 + (-1.94 - 1.78i)T \) |
| 13 | \( 1 + (-3.53 - 0.728i)T \) |
good | 2 | \( 1 + (0.667 - 0.385i)T + (1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (-0.907 + 1.57i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + 0.582iT - 11T^{2} \) |
| 17 | \( 1 + (0.479 - 0.829i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + 1.92iT - 19T^{2} \) |
| 23 | \( 1 + (-7.56 + 4.36i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.26 + 2.46i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (2.83 - 1.63i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.899 - 1.55i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.73 - 2.99i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.367 + 0.636i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (3.49 - 6.04i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (5.08 - 2.93i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (3.82 - 6.63i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + 3.82iT - 61T^{2} \) |
| 67 | \( 1 + 10.1T + 67T^{2} \) |
| 71 | \( 1 + (9.73 - 5.61i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (7.30 - 4.21i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.35 + 11.0i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 7.45T + 83T^{2} \) |
| 89 | \( 1 + (-3.53 - 6.12i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-7.89 + 4.55i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.04334004527806081916628514999, −11.03398019559357400820056911598, −9.254935268324535892143078858510, −8.879832234993674837023570151229, −8.208396182165102195658060637800, −7.18687780586697514311254323271, −6.02057761827621362786964614838, −4.60973647788387696773095062365, −3.04760545010185883509705610455, −1.35852628583970183163368662436,
1.73803409946488639742259150939, 3.37145380624365688802916653994, 4.70638243720170058813576881453, 5.72152385873393635558762176657, 7.27841047933777935161175039345, 8.414886900834145846961739005827, 9.241545126563646949685915696871, 10.13242778402532643362276544386, 10.85770069933285304219087981356, 11.26728406463004315963429472070