L(s) = 1 | + i·2-s + (0.866 + 0.5i)3-s + (−0.866 − 0.5i)5-s + (−0.5 + 0.866i)6-s + (−0.5 − 0.866i)7-s + i·8-s + (0.499 + 0.866i)9-s + (0.5 − 0.866i)10-s − 13-s + (0.866 − 0.5i)14-s + (−0.499 − 0.866i)15-s − 16-s − i·17-s + (−0.866 + 0.499i)18-s − 0.999i·21-s + ⋯ |
L(s) = 1 | + i·2-s + (0.866 + 0.5i)3-s + (−0.866 − 0.5i)5-s + (−0.5 + 0.866i)6-s + (−0.5 − 0.866i)7-s + i·8-s + (0.499 + 0.866i)9-s + (0.5 − 0.866i)10-s − 13-s + (0.866 − 0.5i)14-s + (−0.499 − 0.866i)15-s − 16-s − i·17-s + (−0.866 + 0.499i)18-s − 0.999i·21-s + ⋯ |
Λ(s)=(=(273s/2ΓC(s)L(s)(0.190−0.981i)Λ(1−s)
Λ(s)=(=(273s/2ΓC(s)L(s)(0.190−0.981i)Λ(1−s)
Degree: |
2 |
Conductor: |
273
= 3⋅7⋅13
|
Sign: |
0.190−0.981i
|
Analytic conductor: |
0.136244 |
Root analytic conductor: |
0.369113 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ273(107,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 273, ( :0), 0.190−0.981i)
|
Particular Values
L(21) |
≈ |
0.8902485401 |
L(21) |
≈ |
0.8902485401 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.866−0.5i)T |
| 7 | 1+(0.5+0.866i)T |
| 13 | 1+T |
good | 2 | 1−iT−T2 |
| 5 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 17 | 1+iT−T2 |
| 19 | 1+(−0.5+0.866i)T2 |
| 23 | 1+iT−T2 |
| 29 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 31 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 37 | 1−T+T2 |
| 41 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 43 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 47 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 53 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 59 | 1−iT−T2 |
| 61 | 1+(−0.5+0.866i)T2 |
| 67 | 1+(−0.5−0.866i)T2 |
| 71 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 73 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 79 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1−iT−T2 |
| 97 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.45839087364309845829082429501, −11.34893602192075396821191455166, −10.27090992328387082700100767647, −9.261984649232099377938399527062, −8.231170295604727435905978789256, −7.51828293431547257653370785905, −6.79630155492941171133576287977, −5.07790150804553031667076782138, −4.21133916261879778572438295852, −2.75991142853910062421931303486,
2.09368771117900151686760285036, 3.08829971249185133363349303392, 3.99770012676609839692866788023, 6.11384775433892806220920232724, 7.22864699467596249750084034109, 8.007607814910001464625463047681, 9.337069498874731396699529351394, 9.946932265950353662835940003386, 11.28242428730413389059665891949, 11.90363920371632228224238796993