L(s) = 1 | + i·2-s + (0.866 + 0.5i)3-s + (−0.866 − 0.5i)5-s + (−0.5 + 0.866i)6-s + (−0.5 − 0.866i)7-s + i·8-s + (0.499 + 0.866i)9-s + (0.5 − 0.866i)10-s − 13-s + (0.866 − 0.5i)14-s + (−0.499 − 0.866i)15-s − 16-s − i·17-s + (−0.866 + 0.499i)18-s − 0.999i·21-s + ⋯ |
L(s) = 1 | + i·2-s + (0.866 + 0.5i)3-s + (−0.866 − 0.5i)5-s + (−0.5 + 0.866i)6-s + (−0.5 − 0.866i)7-s + i·8-s + (0.499 + 0.866i)9-s + (0.5 − 0.866i)10-s − 13-s + (0.866 − 0.5i)14-s + (−0.499 − 0.866i)15-s − 16-s − i·17-s + (−0.866 + 0.499i)18-s − 0.999i·21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.190 - 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.190 - 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8902485401\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8902485401\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 + T \) |
good | 2 | \( 1 - iT - T^{2} \) |
| 5 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + iT - T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + iT - T^{2} \) |
| 29 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - T + T^{2} \) |
| 41 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 - iT - T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - iT - T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.45839087364309845829082429501, −11.34893602192075396821191455166, −10.27090992328387082700100767647, −9.261984649232099377938399527062, −8.231170295604727435905978789256, −7.51828293431547257653370785905, −6.79630155492941171133576287977, −5.07790150804553031667076782138, −4.21133916261879778572438295852, −2.75991142853910062421931303486,
2.09368771117900151686760285036, 3.08829971249185133363349303392, 3.99770012676609839692866788023, 6.11384775433892806220920232724, 7.22864699467596249750084034109, 8.007607814910001464625463047681, 9.337069498874731396699529351394, 9.946932265950353662835940003386, 11.28242428730413389059665891949, 11.90363920371632228224238796993