L(s) = 1 | − 0.311i·2-s + 3-s + 1.90·4-s + 1.52i·5-s − 0.311i·6-s − i·7-s − 1.21i·8-s + 9-s + 0.474·10-s − 1.09i·11-s + 1.90·12-s + (−0.311 + 3.59i)13-s − 0.311·14-s + 1.52i·15-s + 3.42·16-s − 4.42·17-s + ⋯ |
L(s) = 1 | − 0.219i·2-s + 0.577·3-s + 0.951·4-s + 0.682i·5-s − 0.127i·6-s − 0.377i·7-s − 0.429i·8-s + 0.333·9-s + 0.150·10-s − 0.330i·11-s + 0.549·12-s + (−0.0862 + 0.996i)13-s − 0.0831·14-s + 0.393i·15-s + 0.857·16-s − 1.07·17-s + ⋯ |
Λ(s)=(=(273s/2ΓC(s)L(s)(0.996+0.0862i)Λ(2−s)
Λ(s)=(=(273s/2ΓC(s+1/2)L(s)(0.996+0.0862i)Λ(1−s)
Degree: |
2 |
Conductor: |
273
= 3⋅7⋅13
|
Sign: |
0.996+0.0862i
|
Analytic conductor: |
2.17991 |
Root analytic conductor: |
1.47645 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ273(64,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 273, ( :1/2), 0.996+0.0862i)
|
Particular Values
L(1) |
≈ |
1.80138−0.0778623i |
L(21) |
≈ |
1.80138−0.0778623i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 7 | 1+iT |
| 13 | 1+(0.311−3.59i)T |
good | 2 | 1+0.311iT−2T2 |
| 5 | 1−1.52iT−5T2 |
| 11 | 1+1.09iT−11T2 |
| 17 | 1+4.42T+17T2 |
| 19 | 1+1.80iT−19T2 |
| 23 | 1+3.80T+23T2 |
| 29 | 1+0.755T+29T2 |
| 31 | 1+4.85iT−31T2 |
| 37 | 1+5.80iT−37T2 |
| 41 | 1−11.3iT−41T2 |
| 43 | 1+5.24T+43T2 |
| 47 | 1+2.28iT−47T2 |
| 53 | 1+6T+53T2 |
| 59 | 1+0.474iT−59T2 |
| 61 | 1+13.0T+61T2 |
| 67 | 1−9.80iT−67T2 |
| 71 | 1+13.0iT−71T2 |
| 73 | 1−3.47iT−73T2 |
| 79 | 1+5.37T+79T2 |
| 83 | 1−13.8iT−83T2 |
| 89 | 1+13.1iT−89T2 |
| 97 | 1−4.42iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.59873026205693901627568150511, −11.06200879097910046834464087576, −10.13017352691567721280690188406, −9.117166389826995029765596737245, −7.86527482384509222937189736622, −6.93292181150739007290105923746, −6.25347801892522008576555988528, −4.34118793921069571939102553210, −3.09317382451000324356072312721, −1.97851998649247369470744504369,
1.85970556634421356119870076599, 3.16320434466550192932125757184, 4.78811076197096348677920127861, 5.95999730114951667267006316850, 7.08540439103700080986526913782, 8.098853156110072846143139536741, 8.824733503730826407723558036240, 10.04249878460990641182770542750, 10.92118748675425819245008277863, 12.13972071819340141174734084033