L(s) = 1 | + 2.61·2-s + 3-s + 4.81·4-s − 3.81·5-s + 2.61·6-s + 7-s + 7.34·8-s + 9-s − 9.95·10-s − 4.73·11-s + 4.81·12-s + 13-s + 2.61·14-s − 3.81·15-s + 9.55·16-s − 5.22·17-s + 2.61·18-s + 2.92·19-s − 18.3·20-s + 21-s − 12.3·22-s + 3.33·23-s + 7.34·24-s + 9.55·25-s + 2.61·26-s + 27-s + 4.81·28-s + ⋯ |
L(s) = 1 | + 1.84·2-s + 0.577·3-s + 2.40·4-s − 1.70·5-s + 1.06·6-s + 0.377·7-s + 2.59·8-s + 0.333·9-s − 3.14·10-s − 1.42·11-s + 1.38·12-s + 0.277·13-s + 0.697·14-s − 0.984·15-s + 2.38·16-s − 1.26·17-s + 0.615·18-s + 0.670·19-s − 4.10·20-s + 0.218·21-s − 2.63·22-s + 0.694·23-s + 1.49·24-s + 1.91·25-s + 0.511·26-s + 0.192·27-s + 0.909·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.255660512\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.255660512\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - T \) |
| 7 | \( 1 - T \) |
| 13 | \( 1 - T \) |
good | 2 | \( 1 - 2.61T + 2T^{2} \) |
| 5 | \( 1 + 3.81T + 5T^{2} \) |
| 11 | \( 1 + 4.73T + 11T^{2} \) |
| 17 | \( 1 + 5.22T + 17T^{2} \) |
| 19 | \( 1 - 2.92T + 19T^{2} \) |
| 23 | \( 1 - 3.33T + 23T^{2} \) |
| 29 | \( 1 + 0.922T + 29T^{2} \) |
| 31 | \( 1 + 7.51T + 31T^{2} \) |
| 37 | \( 1 - 0.154T + 37T^{2} \) |
| 41 | \( 1 - 6.36T + 41T^{2} \) |
| 43 | \( 1 + 6.55T + 43T^{2} \) |
| 47 | \( 1 - 9.03T + 47T^{2} \) |
| 53 | \( 1 - 8.55T + 53T^{2} \) |
| 59 | \( 1 - 3.95T + 59T^{2} \) |
| 61 | \( 1 - 12.4T + 61T^{2} \) |
| 67 | \( 1 + 10.6T + 67T^{2} \) |
| 71 | \( 1 + 6.58T + 71T^{2} \) |
| 73 | \( 1 + 7.73T + 73T^{2} \) |
| 79 | \( 1 - 13.3T + 79T^{2} \) |
| 83 | \( 1 + 1.40T + 83T^{2} \) |
| 89 | \( 1 + 1.96T + 89T^{2} \) |
| 97 | \( 1 + 2.11T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.09501066929474667624338485190, −11.23939024306669450237144544528, −10.70243886733941868471052610459, −8.665553729300073867917416106964, −7.59812598639803922425882860881, −7.07590021453430569261566645838, −5.41369456039447429979351854216, −4.47083612524782670720743209297, −3.62387459756726331630318828744, −2.55677068828348872473276058447,
2.55677068828348872473276058447, 3.62387459756726331630318828744, 4.47083612524782670720743209297, 5.41369456039447429979351854216, 7.07590021453430569261566645838, 7.59812598639803922425882860881, 8.665553729300073867917416106964, 10.70243886733941868471052610459, 11.23939024306669450237144544528, 12.09501066929474667624338485190