L(s) = 1 | + 2.61·2-s + 3-s + 4.81·4-s − 3.81·5-s + 2.61·6-s + 7-s + 7.34·8-s + 9-s − 9.95·10-s − 4.73·11-s + 4.81·12-s + 13-s + 2.61·14-s − 3.81·15-s + 9.55·16-s − 5.22·17-s + 2.61·18-s + 2.92·19-s − 18.3·20-s + 21-s − 12.3·22-s + 3.33·23-s + 7.34·24-s + 9.55·25-s + 2.61·26-s + 27-s + 4.81·28-s + ⋯ |
L(s) = 1 | + 1.84·2-s + 0.577·3-s + 2.40·4-s − 1.70·5-s + 1.06·6-s + 0.377·7-s + 2.59·8-s + 0.333·9-s − 3.14·10-s − 1.42·11-s + 1.38·12-s + 0.277·13-s + 0.697·14-s − 0.984·15-s + 2.38·16-s − 1.26·17-s + 0.615·18-s + 0.670·19-s − 4.10·20-s + 0.218·21-s − 2.63·22-s + 0.694·23-s + 1.49·24-s + 1.91·25-s + 0.511·26-s + 0.192·27-s + 0.909·28-s + ⋯ |
Λ(s)=(=(273s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(273s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.255660512 |
L(21) |
≈ |
3.255660512 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 7 | 1−T |
| 13 | 1−T |
good | 2 | 1−2.61T+2T2 |
| 5 | 1+3.81T+5T2 |
| 11 | 1+4.73T+11T2 |
| 17 | 1+5.22T+17T2 |
| 19 | 1−2.92T+19T2 |
| 23 | 1−3.33T+23T2 |
| 29 | 1+0.922T+29T2 |
| 31 | 1+7.51T+31T2 |
| 37 | 1−0.154T+37T2 |
| 41 | 1−6.36T+41T2 |
| 43 | 1+6.55T+43T2 |
| 47 | 1−9.03T+47T2 |
| 53 | 1−8.55T+53T2 |
| 59 | 1−3.95T+59T2 |
| 61 | 1−12.4T+61T2 |
| 67 | 1+10.6T+67T2 |
| 71 | 1+6.58T+71T2 |
| 73 | 1+7.73T+73T2 |
| 79 | 1−13.3T+79T2 |
| 83 | 1+1.40T+83T2 |
| 89 | 1+1.96T+89T2 |
| 97 | 1+2.11T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.09501066929474667624338485190, −11.23939024306669450237144544528, −10.70243886733941868471052610459, −8.665553729300073867917416106964, −7.59812598639803922425882860881, −7.07590021453430569261566645838, −5.41369456039447429979351854216, −4.47083612524782670720743209297, −3.62387459756726331630318828744, −2.55677068828348872473276058447,
2.55677068828348872473276058447, 3.62387459756726331630318828744, 4.47083612524782670720743209297, 5.41369456039447429979351854216, 7.07590021453430569261566645838, 7.59812598639803922425882860881, 8.665553729300073867917416106964, 10.70243886733941868471052610459, 11.23939024306669450237144544528, 12.09501066929474667624338485190