L(s) = 1 | + (0.809 + 0.587i)3-s + (0.190 − 0.587i)5-s + (1.80 − 1.31i)7-s + (0.309 + 0.951i)9-s + (1.69 − 2.85i)11-s + (1.30 + 4.02i)13-s + (0.5 − 0.363i)15-s + (−0.118 + 0.363i)17-s + (1.11 + 0.812i)19-s + 2.23·21-s − 5.47·23-s + (3.73 + 2.71i)25-s + (−0.309 + 0.951i)27-s + (−1.61 + 1.17i)29-s + (−2.5 − 7.69i)31-s + ⋯ |
L(s) = 1 | + (0.467 + 0.339i)3-s + (0.0854 − 0.262i)5-s + (0.683 − 0.496i)7-s + (0.103 + 0.317i)9-s + (0.509 − 0.860i)11-s + (0.363 + 1.11i)13-s + (0.129 − 0.0937i)15-s + (−0.0286 + 0.0881i)17-s + (0.256 + 0.186i)19-s + 0.487·21-s − 1.14·23-s + (0.747 + 0.542i)25-s + (−0.0594 + 0.183i)27-s + (−0.300 + 0.218i)29-s + (−0.449 − 1.38i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 - 0.0475i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.998 - 0.0475i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.58196 + 0.0376165i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.58196 + 0.0376165i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.809 - 0.587i)T \) |
| 11 | \( 1 + (-1.69 + 2.85i)T \) |
good | 5 | \( 1 + (-0.190 + 0.587i)T + (-4.04 - 2.93i)T^{2} \) |
| 7 | \( 1 + (-1.80 + 1.31i)T + (2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (-1.30 - 4.02i)T + (-10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (0.118 - 0.363i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (-1.11 - 0.812i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + 5.47T + 23T^{2} \) |
| 29 | \( 1 + (1.61 - 1.17i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (2.5 + 7.69i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (5.42 - 3.94i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (3.04 + 2.21i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 - 5.94T + 43T^{2} \) |
| 47 | \( 1 + (7.78 + 5.65i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (2.64 + 8.14i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (3.11 - 2.26i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (2.04 - 6.29i)T + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 + 2.90T + 67T^{2} \) |
| 71 | \( 1 + (0.663 - 2.04i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (7.09 - 5.15i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (1.92 + 5.93i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (4.07 - 12.5i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 + 7.76T + 89T^{2} \) |
| 97 | \( 1 + (5.28 + 16.2i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.72436032928882037731733641287, −11.12644095067972738669993913890, −9.999732683709225374666894418485, −8.996044335959091221335905744270, −8.279695761095418457491335652523, −7.13757139669966276848938583356, −5.85696094132759234671971947785, −4.51849568430584481945326550148, −3.57007276742364067301564624494, −1.67813078131380372060368036726,
1.77510488803544109489689803721, 3.18758906129843194180079311809, 4.70091977343419175662852996464, 5.95805558497606906418127805916, 7.14536664806528276416559054461, 8.080907398805565660241410335966, 8.952178158186011862074254171384, 10.04179663258717277850546694854, 11.00620807749204027158944782994, 12.14831447213179960324834968177