Properties

Label 264.2.q.d.49.1
Level $264$
Weight $2$
Character 264.49
Analytic conductor $2.108$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [264,2,Mod(25,264)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(264, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("264.25"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 264 = 2^{3} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 264.q (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,1,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.10805061336\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 49.1
Root \(-0.309017 - 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 264.49
Dual form 264.2.q.d.97.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.809017 + 0.587785i) q^{3} +(0.190983 - 0.587785i) q^{5} +(1.80902 - 1.31433i) q^{7} +(0.309017 + 0.951057i) q^{9} +(1.69098 - 2.85317i) q^{11} +(1.30902 + 4.02874i) q^{13} +(0.500000 - 0.363271i) q^{15} +(-0.118034 + 0.363271i) q^{17} +(1.11803 + 0.812299i) q^{19} +2.23607 q^{21} -5.47214 q^{23} +(3.73607 + 2.71441i) q^{25} +(-0.309017 + 0.951057i) q^{27} +(-1.61803 + 1.17557i) q^{29} +(-2.50000 - 7.69421i) q^{31} +(3.04508 - 1.31433i) q^{33} +(-0.427051 - 1.31433i) q^{35} +(-5.42705 + 3.94298i) q^{37} +(-1.30902 + 4.02874i) q^{39} +(-3.04508 - 2.21238i) q^{41} +5.94427 q^{43} +0.618034 q^{45} +(-7.78115 - 5.65334i) q^{47} +(-0.618034 + 1.90211i) q^{49} +(-0.309017 + 0.224514i) q^{51} +(-2.64590 - 8.14324i) q^{53} +(-1.35410 - 1.53884i) q^{55} +(0.427051 + 1.31433i) q^{57} +(-3.11803 + 2.26538i) q^{59} +(-2.04508 + 6.29412i) q^{61} +(1.80902 + 1.31433i) q^{63} +2.61803 q^{65} -2.90983 q^{67} +(-4.42705 - 3.21644i) q^{69} +(-0.663119 + 2.04087i) q^{71} +(-7.09017 + 5.15131i) q^{73} +(1.42705 + 4.39201i) q^{75} +(-0.690983 - 7.38394i) q^{77} +(-1.92705 - 5.93085i) q^{79} +(-0.809017 + 0.587785i) q^{81} +(-4.07295 + 12.5352i) q^{83} +(0.190983 + 0.138757i) q^{85} -2.00000 q^{87} -7.76393 q^{89} +(7.66312 + 5.56758i) q^{91} +(2.50000 - 7.69421i) q^{93} +(0.690983 - 0.502029i) q^{95} +(-5.28115 - 16.2537i) q^{97} +(3.23607 + 0.726543i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} + 3 q^{5} + 5 q^{7} - q^{9} + 9 q^{11} + 3 q^{13} + 2 q^{15} + 4 q^{17} - 4 q^{23} + 6 q^{25} + q^{27} - 2 q^{29} - 10 q^{31} + q^{33} + 5 q^{35} - 15 q^{37} - 3 q^{39} - q^{41} - 12 q^{43}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/264\mathbb{Z}\right)^\times\).

\(n\) \(89\) \(133\) \(145\) \(199\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.809017 + 0.587785i 0.467086 + 0.339358i
\(4\) 0 0
\(5\) 0.190983 0.587785i 0.0854102 0.262866i −0.899226 0.437485i \(-0.855869\pi\)
0.984636 + 0.174619i \(0.0558694\pi\)
\(6\) 0 0
\(7\) 1.80902 1.31433i 0.683744 0.496769i −0.190854 0.981619i \(-0.561126\pi\)
0.874598 + 0.484849i \(0.161126\pi\)
\(8\) 0 0
\(9\) 0.309017 + 0.951057i 0.103006 + 0.317019i
\(10\) 0 0
\(11\) 1.69098 2.85317i 0.509851 0.860263i
\(12\) 0 0
\(13\) 1.30902 + 4.02874i 0.363056 + 1.11737i 0.951189 + 0.308608i \(0.0998630\pi\)
−0.588133 + 0.808764i \(0.700137\pi\)
\(14\) 0 0
\(15\) 0.500000 0.363271i 0.129099 0.0937962i
\(16\) 0 0
\(17\) −0.118034 + 0.363271i −0.0286274 + 0.0881062i −0.964349 0.264632i \(-0.914749\pi\)
0.935722 + 0.352738i \(0.114749\pi\)
\(18\) 0 0
\(19\) 1.11803 + 0.812299i 0.256495 + 0.186354i 0.708600 0.705610i \(-0.249327\pi\)
−0.452106 + 0.891964i \(0.649327\pi\)
\(20\) 0 0
\(21\) 2.23607 0.487950
\(22\) 0 0
\(23\) −5.47214 −1.14102 −0.570510 0.821291i \(-0.693254\pi\)
−0.570510 + 0.821291i \(0.693254\pi\)
\(24\) 0 0
\(25\) 3.73607 + 2.71441i 0.747214 + 0.542882i
\(26\) 0 0
\(27\) −0.309017 + 0.951057i −0.0594703 + 0.183031i
\(28\) 0 0
\(29\) −1.61803 + 1.17557i −0.300461 + 0.218298i −0.727793 0.685797i \(-0.759454\pi\)
0.427331 + 0.904095i \(0.359454\pi\)
\(30\) 0 0
\(31\) −2.50000 7.69421i −0.449013 1.38192i −0.878022 0.478620i \(-0.841137\pi\)
0.429009 0.903300i \(-0.358863\pi\)
\(32\) 0 0
\(33\) 3.04508 1.31433i 0.530081 0.228795i
\(34\) 0 0
\(35\) −0.427051 1.31433i −0.0721848 0.222162i
\(36\) 0 0
\(37\) −5.42705 + 3.94298i −0.892202 + 0.648222i −0.936451 0.350798i \(-0.885910\pi\)
0.0442495 + 0.999021i \(0.485910\pi\)
\(38\) 0 0
\(39\) −1.30902 + 4.02874i −0.209610 + 0.645115i
\(40\) 0 0
\(41\) −3.04508 2.21238i −0.475562 0.345516i 0.324043 0.946042i \(-0.394958\pi\)
−0.799605 + 0.600526i \(0.794958\pi\)
\(42\) 0 0
\(43\) 5.94427 0.906493 0.453246 0.891385i \(-0.350266\pi\)
0.453246 + 0.891385i \(0.350266\pi\)
\(44\) 0 0
\(45\) 0.618034 0.0921311
\(46\) 0 0
\(47\) −7.78115 5.65334i −1.13500 0.824624i −0.148583 0.988900i \(-0.547471\pi\)
−0.986414 + 0.164276i \(0.947471\pi\)
\(48\) 0 0
\(49\) −0.618034 + 1.90211i −0.0882906 + 0.271730i
\(50\) 0 0
\(51\) −0.309017 + 0.224514i −0.0432710 + 0.0314382i
\(52\) 0 0
\(53\) −2.64590 8.14324i −0.363442 1.11856i −0.950951 0.309342i \(-0.899891\pi\)
0.587509 0.809218i \(-0.300109\pi\)
\(54\) 0 0
\(55\) −1.35410 1.53884i −0.182587 0.207497i
\(56\) 0 0
\(57\) 0.427051 + 1.31433i 0.0565643 + 0.174087i
\(58\) 0 0
\(59\) −3.11803 + 2.26538i −0.405933 + 0.294928i −0.771953 0.635679i \(-0.780720\pi\)
0.366020 + 0.930607i \(0.380720\pi\)
\(60\) 0 0
\(61\) −2.04508 + 6.29412i −0.261846 + 0.805880i 0.730557 + 0.682852i \(0.239261\pi\)
−0.992403 + 0.123028i \(0.960739\pi\)
\(62\) 0 0
\(63\) 1.80902 + 1.31433i 0.227915 + 0.165590i
\(64\) 0 0
\(65\) 2.61803 0.324727
\(66\) 0 0
\(67\) −2.90983 −0.355492 −0.177746 0.984076i \(-0.556881\pi\)
−0.177746 + 0.984076i \(0.556881\pi\)
\(68\) 0 0
\(69\) −4.42705 3.21644i −0.532954 0.387214i
\(70\) 0 0
\(71\) −0.663119 + 2.04087i −0.0786977 + 0.242207i −0.982663 0.185398i \(-0.940643\pi\)
0.903966 + 0.427605i \(0.140643\pi\)
\(72\) 0 0
\(73\) −7.09017 + 5.15131i −0.829842 + 0.602915i −0.919515 0.393056i \(-0.871418\pi\)
0.0896729 + 0.995971i \(0.471418\pi\)
\(74\) 0 0
\(75\) 1.42705 + 4.39201i 0.164782 + 0.507146i
\(76\) 0 0
\(77\) −0.690983 7.38394i −0.0787448 0.841478i
\(78\) 0 0
\(79\) −1.92705 5.93085i −0.216810 0.667273i −0.999020 0.0442582i \(-0.985908\pi\)
0.782210 0.623015i \(-0.214092\pi\)
\(80\) 0 0
\(81\) −0.809017 + 0.587785i −0.0898908 + 0.0653095i
\(82\) 0 0
\(83\) −4.07295 + 12.5352i −0.447064 + 1.37592i 0.433140 + 0.901327i \(0.357406\pi\)
−0.880204 + 0.474595i \(0.842594\pi\)
\(84\) 0 0
\(85\) 0.190983 + 0.138757i 0.0207150 + 0.0150503i
\(86\) 0 0
\(87\) −2.00000 −0.214423
\(88\) 0 0
\(89\) −7.76393 −0.822975 −0.411488 0.911415i \(-0.634991\pi\)
−0.411488 + 0.911415i \(0.634991\pi\)
\(90\) 0 0
\(91\) 7.66312 + 5.56758i 0.803313 + 0.583641i
\(92\) 0 0
\(93\) 2.50000 7.69421i 0.259238 0.797852i
\(94\) 0 0
\(95\) 0.690983 0.502029i 0.0708934 0.0515070i
\(96\) 0 0
\(97\) −5.28115 16.2537i −0.536220 1.65031i −0.740999 0.671507i \(-0.765647\pi\)
0.204779 0.978808i \(-0.434353\pi\)
\(98\) 0 0
\(99\) 3.23607 + 0.726543i 0.325237 + 0.0730203i
\(100\) 0 0
\(101\) 0.218847 + 0.673542i 0.0217761 + 0.0670199i 0.961354 0.275315i \(-0.0887822\pi\)
−0.939578 + 0.342335i \(0.888782\pi\)
\(102\) 0 0
\(103\) 6.09017 4.42477i 0.600082 0.435985i −0.245826 0.969314i \(-0.579059\pi\)
0.845908 + 0.533329i \(0.179059\pi\)
\(104\) 0 0
\(105\) 0.427051 1.31433i 0.0416759 0.128265i
\(106\) 0 0
\(107\) 13.8992 + 10.0984i 1.34369 + 0.976244i 0.999300 + 0.0374160i \(0.0119127\pi\)
0.344385 + 0.938828i \(0.388087\pi\)
\(108\) 0 0
\(109\) 12.0000 1.14939 0.574696 0.818367i \(-0.305120\pi\)
0.574696 + 0.818367i \(0.305120\pi\)
\(110\) 0 0
\(111\) −6.70820 −0.636715
\(112\) 0 0
\(113\) 16.1353 + 11.7229i 1.51788 + 1.10280i 0.962527 + 0.271186i \(0.0874157\pi\)
0.555350 + 0.831617i \(0.312584\pi\)
\(114\) 0 0
\(115\) −1.04508 + 3.21644i −0.0974547 + 0.299935i
\(116\) 0 0
\(117\) −3.42705 + 2.48990i −0.316831 + 0.230191i
\(118\) 0 0
\(119\) 0.263932 + 0.812299i 0.0241946 + 0.0744633i
\(120\) 0 0
\(121\) −5.28115 9.64932i −0.480105 0.877211i
\(122\) 0 0
\(123\) −1.16312 3.57971i −0.104875 0.322772i
\(124\) 0 0
\(125\) 4.80902 3.49396i 0.430132 0.312509i
\(126\) 0 0
\(127\) −5.32624 + 16.3925i −0.472627 + 1.45460i 0.376504 + 0.926415i \(0.377126\pi\)
−0.849131 + 0.528182i \(0.822874\pi\)
\(128\) 0 0
\(129\) 4.80902 + 3.49396i 0.423410 + 0.307626i
\(130\) 0 0
\(131\) 16.2705 1.42156 0.710781 0.703414i \(-0.248342\pi\)
0.710781 + 0.703414i \(0.248342\pi\)
\(132\) 0 0
\(133\) 3.09017 0.267952
\(134\) 0 0
\(135\) 0.500000 + 0.363271i 0.0430331 + 0.0312654i
\(136\) 0 0
\(137\) 4.69098 14.4374i 0.400778 1.23347i −0.523592 0.851969i \(-0.675408\pi\)
0.924370 0.381498i \(-0.124592\pi\)
\(138\) 0 0
\(139\) 10.7812 7.83297i 0.914445 0.664384i −0.0276898 0.999617i \(-0.508815\pi\)
0.942135 + 0.335233i \(0.108815\pi\)
\(140\) 0 0
\(141\) −2.97214 9.14729i −0.250299 0.770341i
\(142\) 0 0
\(143\) 13.7082 + 3.07768i 1.14634 + 0.257369i
\(144\) 0 0
\(145\) 0.381966 + 1.17557i 0.0317206 + 0.0976258i
\(146\) 0 0
\(147\) −1.61803 + 1.17557i −0.133453 + 0.0969594i
\(148\) 0 0
\(149\) 0.545085 1.67760i 0.0446551 0.137434i −0.926243 0.376926i \(-0.876981\pi\)
0.970898 + 0.239492i \(0.0769809\pi\)
\(150\) 0 0
\(151\) −14.0902 10.2371i −1.14664 0.833084i −0.158611 0.987341i \(-0.550702\pi\)
−0.988031 + 0.154257i \(0.950702\pi\)
\(152\) 0 0
\(153\) −0.381966 −0.0308801
\(154\) 0 0
\(155\) −5.00000 −0.401610
\(156\) 0 0
\(157\) 8.70820 + 6.32688i 0.694990 + 0.504940i 0.878297 0.478116i \(-0.158680\pi\)
−0.183306 + 0.983056i \(0.558680\pi\)
\(158\) 0 0
\(159\) 2.64590 8.14324i 0.209833 0.645801i
\(160\) 0 0
\(161\) −9.89919 + 7.19218i −0.780165 + 0.566823i
\(162\) 0 0
\(163\) 1.02786 + 3.16344i 0.0805085 + 0.247780i 0.983207 0.182494i \(-0.0584170\pi\)
−0.902698 + 0.430274i \(0.858417\pi\)
\(164\) 0 0
\(165\) −0.190983 2.04087i −0.0148680 0.158882i
\(166\) 0 0
\(167\) 0.336881 + 1.03681i 0.0260686 + 0.0802310i 0.963244 0.268626i \(-0.0865697\pi\)
−0.937176 + 0.348857i \(0.886570\pi\)
\(168\) 0 0
\(169\) −4.00000 + 2.90617i −0.307692 + 0.223552i
\(170\) 0 0
\(171\) −0.427051 + 1.31433i −0.0326574 + 0.100509i
\(172\) 0 0
\(173\) 18.0623 + 13.1230i 1.37325 + 0.997726i 0.997475 + 0.0710154i \(0.0226240\pi\)
0.375776 + 0.926710i \(0.377376\pi\)
\(174\) 0 0
\(175\) 10.3262 0.780590
\(176\) 0 0
\(177\) −3.85410 −0.289692
\(178\) 0 0
\(179\) −0.190983 0.138757i −0.0142747 0.0103712i 0.580625 0.814171i \(-0.302808\pi\)
−0.594900 + 0.803800i \(0.702808\pi\)
\(180\) 0 0
\(181\) −7.10739 + 21.8743i −0.528288 + 1.62590i 0.229432 + 0.973325i \(0.426313\pi\)
−0.757720 + 0.652579i \(0.773687\pi\)
\(182\) 0 0
\(183\) −5.35410 + 3.88998i −0.395787 + 0.287556i
\(184\) 0 0
\(185\) 1.28115 + 3.94298i 0.0941922 + 0.289894i
\(186\) 0 0
\(187\) 0.836881 + 0.951057i 0.0611988 + 0.0695481i
\(188\) 0 0
\(189\) 0.690983 + 2.12663i 0.0502616 + 0.154689i
\(190\) 0 0
\(191\) 0.0450850 0.0327561i 0.00326223 0.00237015i −0.586153 0.810200i \(-0.699358\pi\)
0.589415 + 0.807830i \(0.299358\pi\)
\(192\) 0 0
\(193\) 6.44427 19.8334i 0.463869 1.42764i −0.396531 0.918021i \(-0.629786\pi\)
0.860400 0.509620i \(-0.170214\pi\)
\(194\) 0 0
\(195\) 2.11803 + 1.53884i 0.151676 + 0.110199i
\(196\) 0 0
\(197\) −9.61803 −0.685257 −0.342628 0.939471i \(-0.611317\pi\)
−0.342628 + 0.939471i \(0.611317\pi\)
\(198\) 0 0
\(199\) −24.4164 −1.73083 −0.865417 0.501053i \(-0.832946\pi\)
−0.865417 + 0.501053i \(0.832946\pi\)
\(200\) 0 0
\(201\) −2.35410 1.71036i −0.166046 0.120639i
\(202\) 0 0
\(203\) −1.38197 + 4.25325i −0.0969950 + 0.298520i
\(204\) 0 0
\(205\) −1.88197 + 1.36733i −0.131442 + 0.0954984i
\(206\) 0 0
\(207\) −1.69098 5.20431i −0.117531 0.361725i
\(208\) 0 0
\(209\) 4.20820 1.81636i 0.291088 0.125640i
\(210\) 0 0
\(211\) −7.97214 24.5357i −0.548824 1.68911i −0.711719 0.702465i \(-0.752083\pi\)
0.162894 0.986644i \(-0.447917\pi\)
\(212\) 0 0
\(213\) −1.73607 + 1.26133i −0.118953 + 0.0864247i
\(214\) 0 0
\(215\) 1.13525 3.49396i 0.0774237 0.238286i
\(216\) 0 0
\(217\) −14.6353 10.6331i −0.993506 0.721824i
\(218\) 0 0
\(219\) −8.76393 −0.592212
\(220\) 0 0
\(221\) −1.61803 −0.108841
\(222\) 0 0
\(223\) 10.8992 + 7.91872i 0.729864 + 0.530277i 0.889520 0.456896i \(-0.151039\pi\)
−0.159657 + 0.987173i \(0.551039\pi\)
\(224\) 0 0
\(225\) −1.42705 + 4.39201i −0.0951367 + 0.292801i
\(226\) 0 0
\(227\) −11.2812 + 8.19624i −0.748756 + 0.544003i −0.895441 0.445180i \(-0.853140\pi\)
0.146685 + 0.989183i \(0.453140\pi\)
\(228\) 0 0
\(229\) −5.67376 17.4620i −0.374933 1.15392i −0.943524 0.331304i \(-0.892511\pi\)
0.568591 0.822620i \(-0.307489\pi\)
\(230\) 0 0
\(231\) 3.78115 6.37988i 0.248782 0.419765i
\(232\) 0 0
\(233\) 6.98936 + 21.5110i 0.457888 + 1.40923i 0.867711 + 0.497069i \(0.165591\pi\)
−0.409823 + 0.912165i \(0.634409\pi\)
\(234\) 0 0
\(235\) −4.80902 + 3.49396i −0.313706 + 0.227921i
\(236\) 0 0
\(237\) 1.92705 5.93085i 0.125175 0.385250i
\(238\) 0 0
\(239\) −9.78115 7.10642i −0.632690 0.459676i 0.224641 0.974442i \(-0.427879\pi\)
−0.857331 + 0.514765i \(0.827879\pi\)
\(240\) 0 0
\(241\) 5.81966 0.374877 0.187439 0.982276i \(-0.439981\pi\)
0.187439 + 0.982276i \(0.439981\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 1.00000 + 0.726543i 0.0638877 + 0.0464171i
\(246\) 0 0
\(247\) −1.80902 + 5.56758i −0.115105 + 0.354257i
\(248\) 0 0
\(249\) −10.6631 + 7.74721i −0.675748 + 0.490959i
\(250\) 0 0
\(251\) −3.06231 9.42481i −0.193291 0.594889i −0.999992 0.00392916i \(-0.998749\pi\)
0.806701 0.590959i \(-0.201251\pi\)
\(252\) 0 0
\(253\) −9.25329 + 15.6129i −0.581749 + 0.981577i
\(254\) 0 0
\(255\) 0.0729490 + 0.224514i 0.00456824 + 0.0140596i
\(256\) 0 0
\(257\) −5.35410 + 3.88998i −0.333980 + 0.242650i −0.742117 0.670270i \(-0.766178\pi\)
0.408138 + 0.912920i \(0.366178\pi\)
\(258\) 0 0
\(259\) −4.63525 + 14.2658i −0.288021 + 0.886437i
\(260\) 0 0
\(261\) −1.61803 1.17557i −0.100154 0.0727660i
\(262\) 0 0
\(263\) 6.50658 0.401213 0.200606 0.979672i \(-0.435709\pi\)
0.200606 + 0.979672i \(0.435709\pi\)
\(264\) 0 0
\(265\) −5.29180 −0.325072
\(266\) 0 0
\(267\) −6.28115 4.56352i −0.384400 0.279283i
\(268\) 0 0
\(269\) 5.67376 17.4620i 0.345935 1.06468i −0.615146 0.788413i \(-0.710903\pi\)
0.961081 0.276266i \(-0.0890972\pi\)
\(270\) 0 0
\(271\) 10.9721 7.97172i 0.666510 0.484248i −0.202345 0.979314i \(-0.564856\pi\)
0.868855 + 0.495067i \(0.164856\pi\)
\(272\) 0 0
\(273\) 2.92705 + 9.00854i 0.177153 + 0.545221i
\(274\) 0 0
\(275\) 14.0623 6.06961i 0.847989 0.366011i
\(276\) 0 0
\(277\) −3.31966 10.2169i −0.199459 0.613872i −0.999896 0.0144542i \(-0.995399\pi\)
0.800436 0.599418i \(-0.204601\pi\)
\(278\) 0 0
\(279\) 6.54508 4.75528i 0.391844 0.284691i
\(280\) 0 0
\(281\) −4.70820 + 14.4904i −0.280868 + 0.864423i 0.706739 + 0.707474i \(0.250166\pi\)
−0.987607 + 0.156948i \(0.949834\pi\)
\(282\) 0 0
\(283\) −5.38197 3.91023i −0.319925 0.232439i 0.416219 0.909265i \(-0.363355\pi\)
−0.736143 + 0.676826i \(0.763355\pi\)
\(284\) 0 0
\(285\) 0.854102 0.0505926
\(286\) 0 0
\(287\) −8.41641 −0.496805
\(288\) 0 0
\(289\) 13.6353 + 9.90659i 0.802074 + 0.582741i
\(290\) 0 0
\(291\) 5.28115 16.2537i 0.309587 0.952810i
\(292\) 0 0
\(293\) −19.5172 + 14.1801i −1.14021 + 0.828410i −0.987148 0.159807i \(-0.948913\pi\)
−0.153060 + 0.988217i \(0.548913\pi\)
\(294\) 0 0
\(295\) 0.736068 + 2.26538i 0.0428555 + 0.131896i
\(296\) 0 0
\(297\) 2.19098 + 2.48990i 0.127134 + 0.144479i
\(298\) 0 0
\(299\) −7.16312 22.0458i −0.414254 1.27494i
\(300\) 0 0
\(301\) 10.7533 7.81272i 0.619809 0.450318i
\(302\) 0 0
\(303\) −0.218847 + 0.673542i −0.0125724 + 0.0386940i
\(304\) 0 0
\(305\) 3.30902 + 2.40414i 0.189474 + 0.137661i
\(306\) 0 0
\(307\) −14.7426 −0.841407 −0.420704 0.907198i \(-0.638217\pi\)
−0.420704 + 0.907198i \(0.638217\pi\)
\(308\) 0 0
\(309\) 7.52786 0.428245
\(310\) 0 0
\(311\) −10.5172 7.64121i −0.596377 0.433293i 0.248214 0.968705i \(-0.420156\pi\)
−0.844591 + 0.535412i \(0.820156\pi\)
\(312\) 0 0
\(313\) −0.128677 + 0.396027i −0.00727326 + 0.0223848i −0.954627 0.297803i \(-0.903746\pi\)
0.947354 + 0.320188i \(0.103746\pi\)
\(314\) 0 0
\(315\) 1.11803 0.812299i 0.0629941 0.0457679i
\(316\) 0 0
\(317\) −0.836881 2.57565i −0.0470039 0.144663i 0.924800 0.380454i \(-0.124232\pi\)
−0.971804 + 0.235790i \(0.924232\pi\)
\(318\) 0 0
\(319\) 0.618034 + 6.60440i 0.0346033 + 0.369775i
\(320\) 0 0
\(321\) 5.30902 + 16.3395i 0.296320 + 0.911981i
\(322\) 0 0
\(323\) −0.427051 + 0.310271i −0.0237618 + 0.0172639i
\(324\) 0 0
\(325\) −6.04508 + 18.6049i −0.335321 + 1.03201i
\(326\) 0 0
\(327\) 9.70820 + 7.05342i 0.536865 + 0.390055i
\(328\) 0 0
\(329\) −21.5066 −1.18570
\(330\) 0 0
\(331\) −4.52786 −0.248874 −0.124437 0.992228i \(-0.539712\pi\)
−0.124437 + 0.992228i \(0.539712\pi\)
\(332\) 0 0
\(333\) −5.42705 3.94298i −0.297401 0.216074i
\(334\) 0 0
\(335\) −0.555728 + 1.71036i −0.0303627 + 0.0934467i
\(336\) 0 0
\(337\) 27.1803 19.7477i 1.48061 1.07572i 0.503247 0.864143i \(-0.332139\pi\)
0.977360 0.211582i \(-0.0678615\pi\)
\(338\) 0 0
\(339\) 6.16312 + 18.9681i 0.334735 + 1.03021i
\(340\) 0 0
\(341\) −26.1803 5.87785i −1.41774 0.318304i
\(342\) 0 0
\(343\) 6.21885 + 19.1396i 0.335786 + 1.03344i
\(344\) 0 0
\(345\) −2.73607 + 1.98787i −0.147305 + 0.107023i
\(346\) 0 0
\(347\) 7.52786 23.1684i 0.404117 1.24374i −0.517513 0.855675i \(-0.673142\pi\)
0.921630 0.388069i \(-0.126858\pi\)
\(348\) 0 0
\(349\) 13.1353 + 9.54332i 0.703114 + 0.510842i 0.880945 0.473219i \(-0.156908\pi\)
−0.177831 + 0.984061i \(0.556908\pi\)
\(350\) 0 0
\(351\) −4.23607 −0.226105
\(352\) 0 0
\(353\) 32.9443 1.75345 0.876723 0.480995i \(-0.159724\pi\)
0.876723 + 0.480995i \(0.159724\pi\)
\(354\) 0 0
\(355\) 1.07295 + 0.779543i 0.0569462 + 0.0413739i
\(356\) 0 0
\(357\) −0.263932 + 0.812299i −0.0139688 + 0.0429914i
\(358\) 0 0
\(359\) 19.0902 13.8698i 1.00754 0.732021i 0.0438488 0.999038i \(-0.486038\pi\)
0.963692 + 0.267017i \(0.0860380\pi\)
\(360\) 0 0
\(361\) −5.28115 16.2537i −0.277955 0.855459i
\(362\) 0 0
\(363\) 1.39919 10.9106i 0.0734383 0.572661i
\(364\) 0 0
\(365\) 1.67376 + 5.15131i 0.0876087 + 0.269632i
\(366\) 0 0
\(367\) −3.11803 + 2.26538i −0.162760 + 0.118252i −0.666184 0.745787i \(-0.732073\pi\)
0.503424 + 0.864040i \(0.332073\pi\)
\(368\) 0 0
\(369\) 1.16312 3.57971i 0.0605496 0.186352i
\(370\) 0 0
\(371\) −15.4894 11.2537i −0.804167 0.584262i
\(372\) 0 0
\(373\) 14.4164 0.746453 0.373227 0.927740i \(-0.378251\pi\)
0.373227 + 0.927740i \(0.378251\pi\)
\(374\) 0 0
\(375\) 5.94427 0.306961
\(376\) 0 0
\(377\) −6.85410 4.97980i −0.353004 0.256473i
\(378\) 0 0
\(379\) −10.5451 + 32.4544i −0.541665 + 1.66707i 0.187126 + 0.982336i \(0.440083\pi\)
−0.728791 + 0.684736i \(0.759917\pi\)
\(380\) 0 0
\(381\) −13.9443 + 10.1311i −0.714387 + 0.519032i
\(382\) 0 0
\(383\) 7.83688 + 24.1194i 0.400446 + 1.23245i 0.924638 + 0.380846i \(0.124367\pi\)
−0.524193 + 0.851600i \(0.675633\pi\)
\(384\) 0 0
\(385\) −4.47214 1.00406i −0.227921 0.0511715i
\(386\) 0 0
\(387\) 1.83688 + 5.65334i 0.0933739 + 0.287375i
\(388\) 0 0
\(389\) 18.1631 13.1963i 0.920907 0.669078i −0.0228428 0.999739i \(-0.507272\pi\)
0.943750 + 0.330661i \(0.107272\pi\)
\(390\) 0 0
\(391\) 0.645898 1.98787i 0.0326645 0.100531i
\(392\) 0 0
\(393\) 13.1631 + 9.56357i 0.663992 + 0.482418i
\(394\) 0 0
\(395\) −3.85410 −0.193921
\(396\) 0 0
\(397\) 35.1803 1.76565 0.882825 0.469701i \(-0.155638\pi\)
0.882825 + 0.469701i \(0.155638\pi\)
\(398\) 0 0
\(399\) 2.50000 + 1.81636i 0.125157 + 0.0909316i
\(400\) 0 0
\(401\) 5.02786 15.4742i 0.251080 0.772743i −0.743497 0.668739i \(-0.766834\pi\)
0.994577 0.104004i \(-0.0331656\pi\)
\(402\) 0 0
\(403\) 27.7254 20.1437i 1.38110 1.00343i
\(404\) 0 0
\(405\) 0.190983 + 0.587785i 0.00949002 + 0.0292073i
\(406\) 0 0
\(407\) 2.07295 + 22.1518i 0.102752 + 1.09802i
\(408\) 0 0
\(409\) −1.05573 3.24920i −0.0522024 0.160662i 0.921557 0.388244i \(-0.126918\pi\)
−0.973759 + 0.227581i \(0.926918\pi\)
\(410\) 0 0
\(411\) 12.2812 8.92278i 0.605785 0.440128i
\(412\) 0 0
\(413\) −2.66312 + 8.19624i −0.131044 + 0.403310i
\(414\) 0 0
\(415\) 6.59017 + 4.78804i 0.323499 + 0.235036i
\(416\) 0 0
\(417\) 13.3262 0.652589
\(418\) 0 0
\(419\) −0.798374 −0.0390031 −0.0195016 0.999810i \(-0.506208\pi\)
−0.0195016 + 0.999810i \(0.506208\pi\)
\(420\) 0 0
\(421\) −3.26393 2.37139i −0.159074 0.115574i 0.505401 0.862885i \(-0.331345\pi\)
−0.664475 + 0.747311i \(0.731345\pi\)
\(422\) 0 0
\(423\) 2.97214 9.14729i 0.144510 0.444757i
\(424\) 0 0
\(425\) −1.42705 + 1.03681i −0.0692221 + 0.0502928i
\(426\) 0 0
\(427\) 4.57295 + 14.0741i 0.221301 + 0.681093i
\(428\) 0 0
\(429\) 9.28115 + 10.5474i 0.448098 + 0.509232i
\(430\) 0 0
\(431\) −3.55573 10.9434i −0.171273 0.527125i 0.828170 0.560477i \(-0.189382\pi\)
−0.999444 + 0.0333512i \(0.989382\pi\)
\(432\) 0 0
\(433\) −9.32624 + 6.77591i −0.448190 + 0.325629i −0.788881 0.614546i \(-0.789339\pi\)
0.340690 + 0.940176i \(0.389339\pi\)
\(434\) 0 0
\(435\) −0.381966 + 1.17557i −0.0183139 + 0.0563643i
\(436\) 0 0
\(437\) −6.11803 4.44501i −0.292665 0.212634i
\(438\) 0 0
\(439\) 10.0557 0.479934 0.239967 0.970781i \(-0.422863\pi\)
0.239967 + 0.970781i \(0.422863\pi\)
\(440\) 0 0
\(441\) −2.00000 −0.0952381
\(442\) 0 0
\(443\) −22.0344 16.0090i −1.04689 0.760609i −0.0752697 0.997163i \(-0.523982\pi\)
−0.971618 + 0.236555i \(0.923982\pi\)
\(444\) 0 0
\(445\) −1.48278 + 4.56352i −0.0702905 + 0.216332i
\(446\) 0 0
\(447\) 1.42705 1.03681i 0.0674972 0.0490396i
\(448\) 0 0
\(449\) 0.909830 + 2.80017i 0.0429375 + 0.132148i 0.970227 0.242196i \(-0.0778678\pi\)
−0.927290 + 0.374344i \(0.877868\pi\)
\(450\) 0 0
\(451\) −11.4615 + 4.94704i −0.539701 + 0.232947i
\(452\) 0 0
\(453\) −5.38197 16.5640i −0.252867 0.778244i
\(454\) 0 0
\(455\) 4.73607 3.44095i 0.222030 0.161314i
\(456\) 0 0
\(457\) 11.1180 34.2178i 0.520080 1.60064i −0.253765 0.967266i \(-0.581669\pi\)
0.773845 0.633375i \(-0.218331\pi\)
\(458\) 0 0
\(459\) −0.309017 0.224514i −0.0144237 0.0104794i
\(460\) 0 0
\(461\) −9.27051 −0.431771 −0.215885 0.976419i \(-0.569264\pi\)
−0.215885 + 0.976419i \(0.569264\pi\)
\(462\) 0 0
\(463\) 28.4508 1.32222 0.661112 0.750288i \(-0.270085\pi\)
0.661112 + 0.750288i \(0.270085\pi\)
\(464\) 0 0
\(465\) −4.04508 2.93893i −0.187586 0.136289i
\(466\) 0 0
\(467\) −2.07295 + 6.37988i −0.0959246 + 0.295226i −0.987494 0.157659i \(-0.949605\pi\)
0.891569 + 0.452885i \(0.149605\pi\)
\(468\) 0 0
\(469\) −5.26393 + 3.82447i −0.243066 + 0.176598i
\(470\) 0 0
\(471\) 3.32624 + 10.2371i 0.153265 + 0.471701i
\(472\) 0 0
\(473\) 10.0517 16.9600i 0.462176 0.779822i
\(474\) 0 0
\(475\) 1.97214 + 6.06961i 0.0904878 + 0.278493i
\(476\) 0 0
\(477\) 6.92705 5.03280i 0.317168 0.230436i
\(478\) 0 0
\(479\) 1.97214 6.06961i 0.0901092 0.277328i −0.895839 0.444379i \(-0.853424\pi\)
0.985948 + 0.167051i \(0.0534245\pi\)
\(480\) 0 0
\(481\) −22.9894 16.7027i −1.04822 0.761580i
\(482\) 0 0
\(483\) −12.2361 −0.556760
\(484\) 0 0
\(485\) −10.5623 −0.479610
\(486\) 0 0
\(487\) 7.28115 + 5.29007i 0.329941 + 0.239716i 0.740405 0.672161i \(-0.234634\pi\)
−0.410465 + 0.911876i \(0.634634\pi\)
\(488\) 0 0
\(489\) −1.02786 + 3.16344i −0.0464816 + 0.143056i
\(490\) 0 0
\(491\) −19.6353 + 14.2658i −0.886127 + 0.643809i −0.934865 0.355003i \(-0.884480\pi\)
0.0487386 + 0.998812i \(0.484480\pi\)
\(492\) 0 0
\(493\) −0.236068 0.726543i −0.0106320 0.0327218i
\(494\) 0 0
\(495\) 1.04508 1.76336i 0.0469731 0.0792569i
\(496\) 0 0
\(497\) 1.48278 + 4.56352i 0.0665117 + 0.204702i
\(498\) 0 0
\(499\) −9.35410 + 6.79615i −0.418747 + 0.304238i −0.777134 0.629336i \(-0.783327\pi\)
0.358386 + 0.933573i \(0.383327\pi\)
\(500\) 0 0
\(501\) −0.336881 + 1.03681i −0.0150507 + 0.0463214i
\(502\) 0 0
\(503\) 27.1803 + 19.7477i 1.21191 + 0.880505i 0.995403 0.0957755i \(-0.0305331\pi\)
0.216508 + 0.976281i \(0.430533\pi\)
\(504\) 0 0
\(505\) 0.437694 0.0194771
\(506\) 0 0
\(507\) −4.94427 −0.219583
\(508\) 0 0
\(509\) −30.2533 21.9803i −1.34095 0.974260i −0.999408 0.0343943i \(-0.989050\pi\)
−0.341545 0.939865i \(-0.610950\pi\)
\(510\) 0 0
\(511\) −6.05573 + 18.6376i −0.267890 + 0.824480i
\(512\) 0 0
\(513\) −1.11803 + 0.812299i −0.0493624 + 0.0358639i
\(514\) 0 0
\(515\) −1.43769 4.42477i −0.0633524 0.194979i
\(516\) 0 0
\(517\) −29.2877 + 12.6412i −1.28807 + 0.555962i
\(518\) 0 0
\(519\) 6.89919 + 21.2335i 0.302841 + 0.932048i
\(520\) 0 0
\(521\) −30.6525 + 22.2703i −1.34291 + 0.975681i −0.343578 + 0.939124i \(0.611639\pi\)
−0.999332 + 0.0365565i \(0.988361\pi\)
\(522\) 0 0
\(523\) 2.26393 6.96767i 0.0989948 0.304675i −0.889279 0.457364i \(-0.848793\pi\)
0.988274 + 0.152690i \(0.0487935\pi\)
\(524\) 0 0
\(525\) 8.35410 + 6.06961i 0.364603 + 0.264900i
\(526\) 0 0
\(527\) 3.09017 0.134610
\(528\) 0 0
\(529\) 6.94427 0.301925
\(530\) 0 0
\(531\) −3.11803 2.26538i −0.135311 0.0983093i
\(532\) 0 0
\(533\) 4.92705 15.1639i 0.213414 0.656822i
\(534\) 0 0
\(535\) 8.59017 6.24112i 0.371385 0.269827i
\(536\) 0 0
\(537\) −0.0729490 0.224514i −0.00314798 0.00968849i
\(538\) 0 0
\(539\) 4.38197 + 4.97980i 0.188745 + 0.214495i
\(540\) 0 0
\(541\) −1.19098 3.66547i −0.0512044 0.157591i 0.922185 0.386750i \(-0.126402\pi\)
−0.973389 + 0.229159i \(0.926402\pi\)
\(542\) 0 0
\(543\) −18.6074 + 13.5191i −0.798520 + 0.580158i
\(544\) 0 0
\(545\) 2.29180 7.05342i 0.0981698 0.302135i
\(546\) 0 0
\(547\) −25.8713 18.7966i −1.10618 0.803685i −0.124120 0.992267i \(-0.539611\pi\)
−0.982057 + 0.188582i \(0.939611\pi\)
\(548\) 0 0
\(549\) −6.61803 −0.282451
\(550\) 0 0
\(551\) −2.76393 −0.117747
\(552\) 0 0
\(553\) −11.2812 8.19624i −0.479723 0.348539i
\(554\) 0 0
\(555\) −1.28115 + 3.94298i −0.0543819 + 0.167370i
\(556\) 0 0
\(557\) 31.8607 23.1481i 1.34998 0.980818i 0.350968 0.936388i \(-0.385853\pi\)
0.999012 0.0444306i \(-0.0141474\pi\)
\(558\) 0 0
\(559\) 7.78115 + 23.9479i 0.329108 + 1.01289i
\(560\) 0 0
\(561\) 0.118034 + 1.26133i 0.00498340 + 0.0532533i
\(562\) 0 0
\(563\) 8.48936 + 26.1276i 0.357784 + 1.10115i 0.954378 + 0.298602i \(0.0965203\pi\)
−0.596594 + 0.802543i \(0.703480\pi\)
\(564\) 0 0
\(565\) 9.97214 7.24518i 0.419531 0.304807i
\(566\) 0 0
\(567\) −0.690983 + 2.12663i −0.0290186 + 0.0893099i
\(568\) 0 0
\(569\) −25.1803 18.2946i −1.05561 0.766949i −0.0823427 0.996604i \(-0.526240\pi\)
−0.973272 + 0.229655i \(0.926240\pi\)
\(570\) 0 0
\(571\) −25.8541 −1.08196 −0.540980 0.841035i \(-0.681947\pi\)
−0.540980 + 0.841035i \(0.681947\pi\)
\(572\) 0 0
\(573\) 0.0557281 0.00232807
\(574\) 0 0
\(575\) −20.4443 14.8536i −0.852585 0.619439i
\(576\) 0 0
\(577\) −6.96556 + 21.4378i −0.289980 + 0.892467i 0.694882 + 0.719124i \(0.255457\pi\)
−0.984862 + 0.173342i \(0.944543\pi\)
\(578\) 0 0
\(579\) 16.8713 12.2577i 0.701148 0.509414i
\(580\) 0 0
\(581\) 9.10739 + 28.0297i 0.377838 + 1.16287i
\(582\) 0 0
\(583\) −27.7082 6.22088i −1.14756 0.257642i
\(584\) 0 0
\(585\) 0.809017 + 2.48990i 0.0334487 + 0.102945i
\(586\) 0 0
\(587\) −18.6074 + 13.5191i −0.768009 + 0.557991i −0.901356 0.433078i \(-0.857427\pi\)
0.133347 + 0.991069i \(0.457427\pi\)
\(588\) 0 0
\(589\) 3.45492 10.6331i 0.142357 0.438131i
\(590\) 0 0
\(591\) −7.78115 5.65334i −0.320074 0.232547i
\(592\) 0 0
\(593\) −40.7984 −1.67539 −0.837694 0.546140i \(-0.816097\pi\)
−0.837694 + 0.546140i \(0.816097\pi\)
\(594\) 0 0
\(595\) 0.527864 0.0216403
\(596\) 0 0
\(597\) −19.7533 14.3516i −0.808448 0.587372i
\(598\) 0 0
\(599\) 2.27051 6.98791i 0.0927705 0.285518i −0.893896 0.448275i \(-0.852039\pi\)
0.986666 + 0.162757i \(0.0520386\pi\)
\(600\) 0 0
\(601\) −9.66312 + 7.02067i −0.394167 + 0.286379i −0.767161 0.641455i \(-0.778331\pi\)
0.372994 + 0.927834i \(0.378331\pi\)
\(602\) 0 0
\(603\) −0.899187 2.76741i −0.0366177 0.112698i
\(604\) 0 0
\(605\) −6.68034 + 1.26133i −0.271594 + 0.0512802i
\(606\) 0 0
\(607\) −1.26393 3.88998i −0.0513014 0.157890i 0.922124 0.386895i \(-0.126453\pi\)
−0.973425 + 0.229006i \(0.926453\pi\)
\(608\) 0 0
\(609\) −3.61803 + 2.62866i −0.146610 + 0.106518i
\(610\) 0 0
\(611\) 12.5902 38.7486i 0.509344 1.56760i
\(612\) 0 0
\(613\) −13.0902 9.51057i −0.528707 0.384128i 0.291167 0.956672i \(-0.405957\pi\)
−0.819874 + 0.572544i \(0.805957\pi\)
\(614\) 0 0
\(615\) −2.32624 −0.0938030
\(616\) 0 0
\(617\) 11.6525 0.469111 0.234556 0.972103i \(-0.424637\pi\)
0.234556 + 0.972103i \(0.424637\pi\)
\(618\) 0 0
\(619\) 13.6631 + 9.92684i 0.549167 + 0.398993i 0.827478 0.561498i \(-0.189775\pi\)
−0.278311 + 0.960491i \(0.589775\pi\)
\(620\) 0 0
\(621\) 1.69098 5.20431i 0.0678568 0.208842i
\(622\) 0 0
\(623\) −14.0451 + 10.2044i −0.562704 + 0.408829i
\(624\) 0 0
\(625\) 6.00000 + 18.4661i 0.240000 + 0.738644i
\(626\) 0 0
\(627\) 4.47214 + 1.00406i 0.178600 + 0.0400982i
\(628\) 0 0
\(629\) −0.791796 2.43690i −0.0315710 0.0971655i
\(630\) 0 0
\(631\) 1.78115 1.29408i 0.0709066 0.0515166i −0.551767 0.833998i \(-0.686046\pi\)
0.622674 + 0.782481i \(0.286046\pi\)
\(632\) 0 0
\(633\) 7.97214 24.5357i 0.316864 0.975207i
\(634\) 0 0
\(635\) 8.61803 + 6.26137i 0.341996 + 0.248475i
\(636\) 0 0
\(637\) −8.47214 −0.335678
\(638\) 0 0
\(639\) −2.14590 −0.0848904
\(640\) 0 0
\(641\) 34.5344 + 25.0907i 1.36403 + 0.991025i 0.998177 + 0.0603513i \(0.0192221\pi\)
0.365851 + 0.930673i \(0.380778\pi\)
\(642\) 0 0
\(643\) 7.64590 23.5317i 0.301525 0.927998i −0.679426 0.733744i \(-0.737771\pi\)
0.980951 0.194254i \(-0.0622287\pi\)
\(644\) 0 0
\(645\) 2.97214 2.15938i 0.117028 0.0850256i
\(646\) 0 0
\(647\) 9.64590 + 29.6870i 0.379219 + 1.16712i 0.940588 + 0.339551i \(0.110275\pi\)
−0.561368 + 0.827566i \(0.689725\pi\)
\(648\) 0 0
\(649\) 1.19098 + 12.7270i 0.0467502 + 0.499579i
\(650\) 0 0
\(651\) −5.59017 17.2048i −0.219096 0.674308i
\(652\) 0 0
\(653\) 22.8713 16.6170i 0.895024 0.650273i −0.0421591 0.999111i \(-0.513424\pi\)
0.937183 + 0.348838i \(0.113424\pi\)
\(654\) 0 0
\(655\) 3.10739 9.56357i 0.121416 0.373679i
\(656\) 0 0
\(657\) −7.09017 5.15131i −0.276614 0.200972i
\(658\) 0 0
\(659\) −13.1246 −0.511262 −0.255631 0.966774i \(-0.582283\pi\)
−0.255631 + 0.966774i \(0.582283\pi\)
\(660\) 0 0
\(661\) 23.6180 0.918635 0.459318 0.888272i \(-0.348094\pi\)
0.459318 + 0.888272i \(0.348094\pi\)
\(662\) 0 0
\(663\) −1.30902 0.951057i −0.0508380 0.0369360i
\(664\) 0 0
\(665\) 0.590170 1.81636i 0.0228858 0.0704353i
\(666\) 0 0
\(667\) 8.85410 6.43288i 0.342832 0.249082i
\(668\) 0 0
\(669\) 4.16312 + 12.8128i 0.160955 + 0.495370i
\(670\) 0 0
\(671\) 14.5000 + 16.4782i 0.559766 + 0.636135i
\(672\) 0 0
\(673\) 5.83688 + 17.9641i 0.224995 + 0.692464i 0.998292 + 0.0584200i \(0.0186063\pi\)
−0.773297 + 0.634044i \(0.781394\pi\)
\(674\) 0 0
\(675\) −3.73607 + 2.71441i −0.143801 + 0.104478i
\(676\) 0 0
\(677\) −7.81966 + 24.0664i −0.300534 + 0.924948i 0.680772 + 0.732495i \(0.261644\pi\)
−0.981306 + 0.192453i \(0.938356\pi\)
\(678\) 0 0
\(679\) −30.9164 22.4621i −1.18646 0.862016i
\(680\) 0 0
\(681\) −13.9443 −0.534346
\(682\) 0 0
\(683\) 25.4721 0.974664 0.487332 0.873217i \(-0.337970\pi\)
0.487332 + 0.873217i \(0.337970\pi\)
\(684\) 0 0
\(685\) −7.59017 5.51458i −0.290005 0.210701i
\(686\) 0 0
\(687\) 5.67376 17.4620i 0.216468 0.666219i
\(688\) 0 0
\(689\) 29.3435 21.3193i 1.11790 0.812200i
\(690\) 0 0
\(691\) −10.2361 31.5034i −0.389398 1.19844i −0.933239 0.359256i \(-0.883030\pi\)
0.543841 0.839189i \(-0.316970\pi\)
\(692\) 0 0
\(693\) 6.80902 2.93893i 0.258653 0.111641i
\(694\) 0 0
\(695\) −2.54508 7.83297i −0.0965406 0.297121i
\(696\) 0 0
\(697\) 1.16312 0.845055i 0.0440563 0.0320088i
\(698\) 0 0
\(699\) −6.98936 + 21.5110i −0.264362 + 0.813622i
\(700\) 0 0
\(701\) 34.0967 + 24.7727i 1.28782 + 0.935653i 0.999759 0.0219597i \(-0.00699056\pi\)
0.288058 + 0.957613i \(0.406991\pi\)
\(702\) 0 0
\(703\) −9.27051 −0.349644
\(704\) 0 0
\(705\) −5.94427 −0.223874
\(706\) 0 0
\(707\) 1.28115 + 0.930812i 0.0481827 + 0.0350068i
\(708\) 0 0
\(709\) −7.11803 + 21.9071i −0.267323 + 0.822737i 0.723826 + 0.689983i \(0.242382\pi\)
−0.991149 + 0.132754i \(0.957618\pi\)
\(710\) 0 0
\(711\) 5.04508 3.66547i 0.189205 0.137466i
\(712\) 0 0
\(713\) 13.6803 + 42.1038i 0.512333 + 1.57680i
\(714\) 0 0
\(715\) 4.42705 7.46969i 0.165562 0.279351i
\(716\) 0 0
\(717\) −3.73607 11.4984i −0.139526 0.429417i
\(718\) 0 0
\(719\) 6.33688 4.60401i 0.236326 0.171701i −0.463319 0.886192i \(-0.653342\pi\)
0.699645 + 0.714491i \(0.253342\pi\)
\(720\) 0 0
\(721\) 5.20163 16.0090i 0.193719 0.596205i
\(722\) 0 0
\(723\) 4.70820 + 3.42071i 0.175100 + 0.127218i
\(724\) 0 0
\(725\) −9.23607 −0.343019
\(726\) 0 0
\(727\) 17.4377 0.646728 0.323364 0.946275i \(-0.395186\pi\)
0.323364 + 0.946275i \(0.395186\pi\)
\(728\) 0 0
\(729\) −0.809017 0.587785i −0.0299636 0.0217698i
\(730\) 0 0
\(731\) −0.701626 + 2.15938i −0.0259506 + 0.0798677i
\(732\) 0 0
\(733\) −16.3262 + 11.8617i −0.603023 + 0.438122i −0.846951 0.531671i \(-0.821564\pi\)
0.243927 + 0.969794i \(0.421564\pi\)
\(734\) 0 0
\(735\) 0.381966 + 1.17557i 0.0140890 + 0.0433616i
\(736\) 0 0
\(737\) −4.92047 + 8.30224i −0.181248 + 0.305817i
\(738\) 0 0
\(739\) −2.98278 9.18005i −0.109723 0.337694i 0.881087 0.472955i \(-0.156813\pi\)
−0.990810 + 0.135261i \(0.956813\pi\)
\(740\) 0 0
\(741\) −4.73607 + 3.44095i −0.173984 + 0.126407i
\(742\) 0 0
\(743\) 0.871323 2.68166i 0.0319657 0.0983804i −0.933801 0.357794i \(-0.883529\pi\)
0.965766 + 0.259413i \(0.0835291\pi\)
\(744\) 0 0
\(745\) −0.881966 0.640786i −0.0323127 0.0234766i
\(746\) 0 0
\(747\) −13.1803 −0.482243
\(748\) 0 0
\(749\) 38.4164 1.40370
\(750\) 0 0
\(751\) 13.9164 + 10.1109i 0.507817 + 0.368951i 0.811995 0.583665i \(-0.198382\pi\)
−0.304178 + 0.952615i \(0.598382\pi\)
\(752\) 0 0
\(753\) 3.06231 9.42481i 0.111597 0.343459i
\(754\) 0 0
\(755\) −8.70820 + 6.32688i −0.316924 + 0.230259i
\(756\) 0 0
\(757\) 1.65654 + 5.09831i 0.0602080 + 0.185301i 0.976637 0.214897i \(-0.0689414\pi\)
−0.916429 + 0.400198i \(0.868941\pi\)
\(758\) 0 0
\(759\) −16.6631 + 7.19218i −0.604833 + 0.261060i
\(760\) 0 0
\(761\) 3.30902 + 10.1841i 0.119952 + 0.369174i 0.992948 0.118554i \(-0.0378259\pi\)
−0.872996 + 0.487728i \(0.837826\pi\)
\(762\) 0 0
\(763\) 21.7082 15.7719i 0.785890 0.570982i
\(764\) 0 0
\(765\) −0.0729490 + 0.224514i −0.00263748 + 0.00811732i
\(766\) 0 0
\(767\) −13.2082 9.59632i −0.476921 0.346503i
\(768\) 0 0
\(769\) 12.9098 0.465540 0.232770 0.972532i \(-0.425221\pi\)
0.232770 + 0.972532i \(0.425221\pi\)
\(770\) 0 0
\(771\) −6.61803 −0.238343
\(772\) 0 0
\(773\) 8.57295 + 6.22861i 0.308348 + 0.224028i 0.731187 0.682177i \(-0.238967\pi\)
−0.422840 + 0.906205i \(0.638967\pi\)
\(774\) 0 0
\(775\) 11.5451 35.5321i 0.414712 1.27635i
\(776\) 0 0
\(777\) −12.1353 + 8.81678i −0.435350 + 0.316300i
\(778\) 0 0
\(779\) −1.60739 4.94704i −0.0575908 0.177246i
\(780\) 0 0
\(781\) 4.70163 + 5.34307i 0.168237 + 0.191190i
\(782\) 0 0
\(783\) −0.618034 1.90211i −0.0220867 0.0679760i
\(784\) 0 0
\(785\) 5.38197 3.91023i 0.192091 0.139562i
\(786\) 0 0
\(787\) −2.23607 + 6.88191i −0.0797072 + 0.245314i −0.982967 0.183779i \(-0.941167\pi\)
0.903260 + 0.429093i \(0.141167\pi\)
\(788\) 0 0
\(789\) 5.26393 + 3.82447i 0.187401 + 0.136155i
\(790\) 0 0
\(791\) 44.5967 1.58568
\(792\) 0 0
\(793\) −28.0344 −0.995532
\(794\) 0 0
\(795\) −4.28115 3.11044i −0.151837 0.110316i
\(796\) 0 0
\(797\) −9.90983 + 30.4993i −0.351024 + 1.08034i 0.607255 + 0.794507i \(0.292271\pi\)
−0.958279 + 0.285834i \(0.907729\pi\)
\(798\) 0 0
\(799\) 2.97214 2.15938i 0.105147 0.0763935i
\(800\) 0 0
\(801\) −2.39919 7.38394i −0.0847711 0.260899i
\(802\) 0 0
\(803\) 2.70820 + 28.9402i 0.0955704 + 1.02128i
\(804\) 0 0
\(805\) 2.33688 + 7.19218i 0.0823642 + 0.253491i
\(806\) 0 0
\(807\) 14.8541 10.7921i 0.522889 0.379901i
\(808\) 0 0
\(809\) 10.7533 33.0952i 0.378066 1.16357i −0.563322 0.826238i \(-0.690477\pi\)
0.941387 0.337328i \(-0.109523\pi\)
\(810\) 0 0
\(811\) 17.3435 + 12.6008i 0.609011 + 0.442473i 0.849066 0.528287i \(-0.177165\pi\)
−0.240055 + 0.970759i \(0.577165\pi\)
\(812\) 0 0
\(813\) 13.5623 0.475651
\(814\) 0 0
\(815\) 2.05573 0.0720090
\(816\) 0 0
\(817\) 6.64590 + 4.82853i 0.232511 + 0.168929i
\(818\) 0 0
\(819\) −2.92705 + 9.00854i −0.102279 + 0.314784i
\(820\) 0 0
\(821\) 26.8435 19.5029i 0.936843 0.680656i −0.0108155 0.999942i \(-0.503443\pi\)
0.947659 + 0.319285i \(0.103443\pi\)
\(822\) 0 0
\(823\) −7.16312 22.0458i −0.249691 0.768469i −0.994829 0.101559i \(-0.967617\pi\)
0.745139 0.666909i \(-0.232383\pi\)
\(824\) 0 0
\(825\) 14.9443 + 3.35520i 0.520293 + 0.116813i
\(826\) 0 0
\(827\) 6.88854 + 21.2008i 0.239538 + 0.737223i 0.996487 + 0.0837484i \(0.0266892\pi\)
−0.756949 + 0.653474i \(0.773311\pi\)
\(828\) 0 0
\(829\) −8.78115 + 6.37988i −0.304982 + 0.221582i −0.729740 0.683724i \(-0.760359\pi\)
0.424758 + 0.905307i \(0.360359\pi\)
\(830\) 0 0
\(831\) 3.31966 10.2169i 0.115158 0.354419i
\(832\) 0 0
\(833\) −0.618034 0.449028i −0.0214136 0.0155579i
\(834\) 0 0
\(835\) 0.673762 0.0233165
\(836\) 0 0
\(837\) 8.09017 0.279637
\(838\) 0 0
\(839\) −13.1353 9.54332i −0.453479 0.329472i 0.337489 0.941330i \(-0.390423\pi\)
−0.790968 + 0.611858i \(0.790423\pi\)
\(840\) 0 0
\(841\) −7.72542 + 23.7764i −0.266394 + 0.819876i
\(842\) 0 0
\(843\) −12.3262 + 8.95554i −0.424538 + 0.308445i
\(844\) 0 0
\(845\) 0.944272 + 2.90617i 0.0324839 + 0.0999753i
\(846\) 0 0
\(847\) −22.2361 10.5146i −0.764040 0.361287i
\(848\) 0 0
\(849\) −2.05573 6.32688i −0.0705524 0.217138i
\(850\) 0 0
\(851\) 29.6976 21.5765i 1.01802 0.739634i
\(852\) 0 0
\(853\) −3.54508 + 10.9106i −0.121381 + 0.373574i −0.993224 0.116212i \(-0.962925\pi\)
0.871843 + 0.489785i \(0.162925\pi\)
\(854\) 0 0
\(855\) 0.690983 + 0.502029i 0.0236311 + 0.0171690i
\(856\) 0 0
\(857\) 14.3475 0.490102 0.245051 0.969510i \(-0.421195\pi\)
0.245051 + 0.969510i \(0.421195\pi\)
\(858\) 0 0
\(859\) 45.0689 1.53773 0.768865 0.639411i \(-0.220822\pi\)
0.768865 + 0.639411i \(0.220822\pi\)
\(860\) 0 0
\(861\) −6.80902 4.94704i −0.232051 0.168595i
\(862\) 0 0
\(863\) −10.0344 + 30.8828i −0.341576 + 1.05126i 0.621815 + 0.783164i \(0.286396\pi\)
−0.963391 + 0.268100i \(0.913604\pi\)
\(864\) 0 0
\(865\) 11.1631 8.11048i 0.379557 0.275765i
\(866\) 0 0
\(867\) 5.20820 + 16.0292i 0.176880 + 0.544380i
\(868\) 0 0
\(869\) −20.1803 4.53077i −0.684571 0.153696i
\(870\) 0 0
\(871\) −3.80902 11.7229i −0.129064 0.397217i
\(872\) 0 0
\(873\) 13.8262 10.0453i 0.467947 0.339984i
\(874\) 0 0
\(875\) 4.10739 12.6412i 0.138855 0.427352i
\(876\) 0 0
\(877\) 13.2812 + 9.64932i 0.448473 + 0.325834i 0.788992 0.614403i \(-0.210603\pi\)
−0.340520 + 0.940237i \(0.610603\pi\)
\(878\) 0 0
\(879\) −24.1246 −0.813703
\(880\) 0 0
\(881\) −57.0344 −1.92154 −0.960770 0.277348i \(-0.910545\pi\)
−0.960770 + 0.277348i \(0.910545\pi\)
\(882\) 0 0
\(883\) −31.0344 22.5478i −1.04439 0.758795i −0.0732541 0.997313i \(-0.523338\pi\)
−0.971138 + 0.238518i \(0.923338\pi\)
\(884\) 0 0
\(885\) −0.736068 + 2.26538i −0.0247427 + 0.0761501i
\(886\) 0 0
\(887\) −12.8992 + 9.37181i −0.433112 + 0.314675i −0.782892 0.622157i \(-0.786256\pi\)
0.349780 + 0.936832i \(0.386256\pi\)
\(888\) 0 0
\(889\) 11.9098 + 36.6547i 0.399443 + 1.22936i
\(890\) 0 0
\(891\) 0.309017 + 3.30220i 0.0103525 + 0.110628i
\(892\) 0 0
\(893\) −4.10739 12.6412i −0.137449 0.423023i
\(894\) 0 0
\(895\) −0.118034 + 0.0857567i −0.00394544 + 0.00286653i
\(896\) 0 0
\(897\) 7.16312 22.0458i 0.239170 0.736088i
\(898\) 0 0
\(899\) 13.0902 + 9.51057i 0.436582 + 0.317195i
\(900\) 0 0
\(901\) 3.27051 0.108956
\(902\) 0 0
\(903\) 13.2918 0.442323
\(904\) 0 0
\(905\) 11.5000 + 8.35524i 0.382273 + 0.277738i
\(906\) 0 0
\(907\) 0.371323 1.14281i 0.0123296 0.0379465i −0.944702 0.327929i \(-0.893649\pi\)
0.957032 + 0.289982i \(0.0936494\pi\)
\(908\) 0 0
\(909\) −0.572949 + 0.416272i −0.0190035 + 0.0138069i
\(910\) 0 0
\(911\) −8.78115 27.0256i −0.290933 0.895398i −0.984557 0.175062i \(-0.943987\pi\)
0.693625 0.720336i \(-0.256013\pi\)
\(912\) 0 0
\(913\) 28.8779 + 32.8177i 0.955719 + 1.08611i
\(914\) 0 0
\(915\) 1.26393 + 3.88998i 0.0417843 + 0.128599i
\(916\) 0 0
\(917\) 29.4336 21.3848i 0.971984 0.706188i
\(918\) 0 0
\(919\) 9.83688 30.2748i 0.324489 0.998674i −0.647182 0.762335i \(-0.724053\pi\)
0.971671 0.236338i \(-0.0759473\pi\)
\(920\) 0 0
\(921\) −11.9271 8.66551i −0.393010 0.285538i
\(922\) 0 0
\(923\) −9.09017 −0.299207
\(924\) 0 0
\(925\) −30.9787 −1.01857
\(926\) 0 0
\(927\) 6.09017 + 4.42477i 0.200027 + 0.145328i
\(928\) 0 0
\(929\) 11.3435 34.9116i 0.372167 1.14541i −0.573203 0.819413i \(-0.694300\pi\)
0.945370 0.325999i \(-0.105700\pi\)
\(930\) 0 0
\(931\) −2.23607 + 1.62460i −0.0732842 + 0.0532441i
\(932\) 0 0
\(933\) −4.01722 12.3637i −0.131518 0.404771i
\(934\) 0 0
\(935\) 0.718847 0.310271i 0.0235088 0.0101469i
\(936\) 0 0
\(937\) −3.89261 11.9802i −0.127166 0.391377i 0.867123 0.498093i \(-0.165966\pi\)
−0.994289 + 0.106717i \(0.965966\pi\)
\(938\) 0 0
\(939\) −0.336881 + 0.244758i −0.0109937 + 0.00798739i
\(940\) 0 0
\(941\) −16.2984 + 50.1612i −0.531312 + 1.63521i 0.220174 + 0.975461i \(0.429337\pi\)
−0.751486 + 0.659749i \(0.770663\pi\)
\(942\) 0 0
\(943\) 16.6631 + 12.1065i 0.542626 + 0.394241i
\(944\) 0 0
\(945\) 1.38197 0.0449554
\(946\) 0 0
\(947\) 41.7426 1.35645 0.678227 0.734853i \(-0.262749\pi\)
0.678227 + 0.734853i \(0.262749\pi\)
\(948\) 0 0
\(949\) −30.0344 21.8213i −0.974959 0.708349i
\(950\) 0 0
\(951\) 0.836881 2.57565i 0.0271377 0.0835213i
\(952\) 0 0
\(953\) −15.6525 + 11.3722i −0.507033 + 0.368381i −0.811697 0.584079i \(-0.801456\pi\)
0.304664 + 0.952460i \(0.401456\pi\)
\(954\) 0 0
\(955\) −0.0106431 0.0327561i −0.000344403 0.00105996i
\(956\) 0 0
\(957\) −3.38197 + 5.70634i −0.109323 + 0.184460i
\(958\) 0 0
\(959\) −10.4894 32.2829i −0.338719 1.04247i
\(960\) 0 0
\(961\) −27.8713 + 20.2497i −0.899075 + 0.653216i
\(962\) 0 0
\(963\) −5.30902 + 16.3395i −0.171081 + 0.526532i
\(964\) 0 0
\(965\) −10.4271 7.57570i −0.335659 0.243870i
\(966\) 0 0
\(967\) −52.3951 −1.68491 −0.842457 0.538764i \(-0.818891\pi\)
−0.842457 + 0.538764i \(0.818891\pi\)
\(968\) 0 0
\(969\) −0.527864 −0.0169574
\(970\) 0 0
\(971\) 8.56231 + 6.22088i 0.274777 + 0.199638i 0.716636 0.697447i \(-0.245681\pi\)
−0.441859 + 0.897085i \(0.645681\pi\)
\(972\) 0 0
\(973\) 9.20820 28.3399i 0.295201 0.908537i
\(974\) 0 0
\(975\) −15.8262 + 11.4984i −0.506845 + 0.368245i
\(976\) 0 0
\(977\) −0.690983 2.12663i −0.0221065 0.0680368i 0.939395 0.342838i \(-0.111388\pi\)
−0.961501 + 0.274801i \(0.911388\pi\)
\(978\) 0 0
\(979\) −13.1287 + 22.1518i −0.419594 + 0.707975i
\(980\) 0 0
\(981\) 3.70820 + 11.4127i 0.118394 + 0.364379i
\(982\) 0 0
\(983\) −35.7984 + 26.0090i −1.14179 + 0.829560i −0.987368 0.158445i \(-0.949352\pi\)
−0.154423 + 0.988005i \(0.549352\pi\)
\(984\) 0 0
\(985\) −1.83688 + 5.65334i −0.0585279 + 0.180130i
\(986\) 0 0
\(987\) −17.3992 12.6412i −0.553822 0.402375i
\(988\) 0 0
\(989\) −32.5279 −1.03433
\(990\) 0 0
\(991\) 15.9230 0.505810 0.252905 0.967491i \(-0.418614\pi\)
0.252905 + 0.967491i \(0.418614\pi\)
\(992\) 0 0
\(993\) −3.66312 2.66141i −0.116246 0.0844573i
\(994\) 0 0
\(995\) −4.66312 + 14.3516i −0.147831 + 0.454976i
\(996\) 0 0
\(997\) 15.4443 11.2209i 0.489125 0.355370i −0.315723 0.948851i \(-0.602247\pi\)
0.804848 + 0.593481i \(0.202247\pi\)
\(998\) 0 0
\(999\) −2.07295 6.37988i −0.0655852 0.201851i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 264.2.q.d.49.1 4
3.2 odd 2 792.2.r.c.577.1 4
4.3 odd 2 528.2.y.c.49.1 4
11.3 even 5 2904.2.a.q.1.2 2
11.8 odd 10 2904.2.a.p.1.2 2
11.9 even 5 inner 264.2.q.d.97.1 yes 4
33.8 even 10 8712.2.a.bn.1.1 2
33.14 odd 10 8712.2.a.bo.1.1 2
33.20 odd 10 792.2.r.c.361.1 4
44.3 odd 10 5808.2.a.ce.1.2 2
44.19 even 10 5808.2.a.cd.1.2 2
44.31 odd 10 528.2.y.c.97.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
264.2.q.d.49.1 4 1.1 even 1 trivial
264.2.q.d.97.1 yes 4 11.9 even 5 inner
528.2.y.c.49.1 4 4.3 odd 2
528.2.y.c.97.1 4 44.31 odd 10
792.2.r.c.361.1 4 33.20 odd 10
792.2.r.c.577.1 4 3.2 odd 2
2904.2.a.p.1.2 2 11.8 odd 10
2904.2.a.q.1.2 2 11.3 even 5
5808.2.a.cd.1.2 2 44.19 even 10
5808.2.a.ce.1.2 2 44.3 odd 10
8712.2.a.bn.1.1 2 33.8 even 10
8712.2.a.bo.1.1 2 33.14 odd 10