L(s) = 1 | + (−1.18 + 0.774i)2-s + (2.05 − 2.05i)3-s + (0.800 − 1.83i)4-s + (1.34 − 1.78i)5-s + (−0.841 + 4.03i)6-s + (0.845 + 0.845i)7-s + (0.472 + 2.78i)8-s − 5.48i·9-s + (−0.211 + 3.15i)10-s + 4.19i·11-s + (−2.12 − 5.42i)12-s + (−0.707 − 0.707i)13-s + (−1.65 − 0.345i)14-s + (−0.901 − 6.44i)15-s + (−2.71 − 2.93i)16-s + (−0.206 + 0.206i)17-s + ⋯ |
L(s) = 1 | + (−0.836 + 0.547i)2-s + (1.18 − 1.18i)3-s + (0.400 − 0.916i)4-s + (0.602 − 0.798i)5-s + (−0.343 + 1.64i)6-s + (0.319 + 0.319i)7-s + (0.167 + 0.985i)8-s − 1.82i·9-s + (−0.0668 + 0.997i)10-s + 1.26i·11-s + (−0.613 − 1.56i)12-s + (−0.196 − 0.196i)13-s + (−0.442 − 0.0923i)14-s + (−0.232 − 1.66i)15-s + (−0.679 − 0.733i)16-s + (−0.0499 + 0.0499i)17-s + ⋯ |
Λ(s)=(=(260s/2ΓC(s)L(s)(0.677+0.735i)Λ(2−s)
Λ(s)=(=(260s/2ΓC(s+1/2)L(s)(0.677+0.735i)Λ(1−s)
Degree: |
2 |
Conductor: |
260
= 22⋅5⋅13
|
Sign: |
0.677+0.735i
|
Analytic conductor: |
2.07611 |
Root analytic conductor: |
1.44087 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ260(183,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 260, ( :1/2), 0.677+0.735i)
|
Particular Values
L(1) |
≈ |
1.24186−0.544454i |
L(21) |
≈ |
1.24186−0.544454i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.18−0.774i)T |
| 5 | 1+(−1.34+1.78i)T |
| 13 | 1+(0.707+0.707i)T |
good | 3 | 1+(−2.05+2.05i)T−3iT2 |
| 7 | 1+(−0.845−0.845i)T+7iT2 |
| 11 | 1−4.19iT−11T2 |
| 17 | 1+(0.206−0.206i)T−17iT2 |
| 19 | 1+4.84T+19T2 |
| 23 | 1+(−0.389+0.389i)T−23iT2 |
| 29 | 1−6.55iT−29T2 |
| 31 | 1−5.06iT−31T2 |
| 37 | 1+(−8.49+8.49i)T−37iT2 |
| 41 | 1+5.61T+41T2 |
| 43 | 1+(3.25−3.25i)T−43iT2 |
| 47 | 1+(−8.91−8.91i)T+47iT2 |
| 53 | 1+(−0.0714−0.0714i)T+53iT2 |
| 59 | 1+10.9T+59T2 |
| 61 | 1+3.57T+61T2 |
| 67 | 1+(6.95+6.95i)T+67iT2 |
| 71 | 1−4.61iT−71T2 |
| 73 | 1+(−2.57−2.57i)T+73iT2 |
| 79 | 1−2.19T+79T2 |
| 83 | 1+(−11.1+11.1i)T−83iT2 |
| 89 | 1−15.0iT−89T2 |
| 97 | 1+(5.51−5.51i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.26526335771945314569916956975, −10.60792027796527485093444007985, −9.416072331899215513773520737807, −8.865220555353824039151006053897, −8.030341846394077544850694716319, −7.20393790862123756947945871050, −6.21690168681720357682758019704, −4.81789143000140728358159969750, −2.37950612741690324092583619719, −1.51448678024610146727083675230,
2.29401474144546655903742279797, 3.26173678437773459068906604756, 4.30977302605483677265833072611, 6.24018856946977272650101411055, 7.70251309358910595196092159449, 8.522245900310702297841898570733, 9.350067841253985573126931240136, 10.16981841571746133781286045287, 10.76597495198543245498758888440, 11.60261404042065375134296782694