L(s) = 1 | + (−1.18 − 0.774i)2-s + (2.05 + 2.05i)3-s + (0.800 + 1.83i)4-s + (1.34 + 1.78i)5-s + (−0.841 − 4.03i)6-s + (0.845 − 0.845i)7-s + (0.472 − 2.78i)8-s + 5.48i·9-s + (−0.211 − 3.15i)10-s − 4.19i·11-s + (−2.12 + 5.42i)12-s + (−0.707 + 0.707i)13-s + (−1.65 + 0.345i)14-s + (−0.901 + 6.44i)15-s + (−2.71 + 2.93i)16-s + (−0.206 − 0.206i)17-s + ⋯ |
L(s) = 1 | + (−0.836 − 0.547i)2-s + (1.18 + 1.18i)3-s + (0.400 + 0.916i)4-s + (0.602 + 0.798i)5-s + (−0.343 − 1.64i)6-s + (0.319 − 0.319i)7-s + (0.167 − 0.985i)8-s + 1.82i·9-s + (−0.0668 − 0.997i)10-s − 1.26i·11-s + (−0.613 + 1.56i)12-s + (−0.196 + 0.196i)13-s + (−0.442 + 0.0923i)14-s + (−0.232 + 1.66i)15-s + (−0.679 + 0.733i)16-s + (−0.0499 − 0.0499i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.677 - 0.735i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.677 - 0.735i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.24186 + 0.544454i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.24186 + 0.544454i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.18 + 0.774i)T \) |
| 5 | \( 1 + (-1.34 - 1.78i)T \) |
| 13 | \( 1 + (0.707 - 0.707i)T \) |
good | 3 | \( 1 + (-2.05 - 2.05i)T + 3iT^{2} \) |
| 7 | \( 1 + (-0.845 + 0.845i)T - 7iT^{2} \) |
| 11 | \( 1 + 4.19iT - 11T^{2} \) |
| 17 | \( 1 + (0.206 + 0.206i)T + 17iT^{2} \) |
| 19 | \( 1 + 4.84T + 19T^{2} \) |
| 23 | \( 1 + (-0.389 - 0.389i)T + 23iT^{2} \) |
| 29 | \( 1 + 6.55iT - 29T^{2} \) |
| 31 | \( 1 + 5.06iT - 31T^{2} \) |
| 37 | \( 1 + (-8.49 - 8.49i)T + 37iT^{2} \) |
| 41 | \( 1 + 5.61T + 41T^{2} \) |
| 43 | \( 1 + (3.25 + 3.25i)T + 43iT^{2} \) |
| 47 | \( 1 + (-8.91 + 8.91i)T - 47iT^{2} \) |
| 53 | \( 1 + (-0.0714 + 0.0714i)T - 53iT^{2} \) |
| 59 | \( 1 + 10.9T + 59T^{2} \) |
| 61 | \( 1 + 3.57T + 61T^{2} \) |
| 67 | \( 1 + (6.95 - 6.95i)T - 67iT^{2} \) |
| 71 | \( 1 + 4.61iT - 71T^{2} \) |
| 73 | \( 1 + (-2.57 + 2.57i)T - 73iT^{2} \) |
| 79 | \( 1 - 2.19T + 79T^{2} \) |
| 83 | \( 1 + (-11.1 - 11.1i)T + 83iT^{2} \) |
| 89 | \( 1 + 15.0iT - 89T^{2} \) |
| 97 | \( 1 + (5.51 + 5.51i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.60261404042065375134296782694, −10.76597495198543245498758888440, −10.16981841571746133781286045287, −9.350067841253985573126931240136, −8.522245900310702297841898570733, −7.70251309358910595196092159449, −6.24018856946977272650101411055, −4.30977302605483677265833072611, −3.26173678437773459068906604756, −2.29401474144546655903742279797,
1.51448678024610146727083675230, 2.37950612741690324092583619719, 4.81789143000140728358159969750, 6.21690168681720357682758019704, 7.20393790862123756947945871050, 8.030341846394077544850694716319, 8.865220555353824039151006053897, 9.416072331899215513773520737807, 10.60792027796527485093444007985, 12.26526335771945314569916956975