L(s) = 1 | + 16·2-s + 75·3-s + 256·4-s − 1.97e3·5-s + 1.20e3·6-s − 1.01e4·7-s + 4.09e3·8-s − 1.40e4·9-s − 3.16e4·10-s + 1.88e4·11-s + 1.92e4·12-s + 2.85e4·13-s − 1.61e5·14-s − 1.48e5·15-s + 6.55e4·16-s − 1.42e5·17-s − 2.24e5·18-s + 8.33e4·19-s − 5.06e5·20-s − 7.58e5·21-s + 3.01e5·22-s − 5.36e5·23-s + 3.07e5·24-s + 1.96e6·25-s + 4.56e5·26-s − 2.53e6·27-s − 2.58e6·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.534·3-s + 1/2·4-s − 1.41·5-s + 0.378·6-s − 1.59·7-s + 0.353·8-s − 0.714·9-s − 1.00·10-s + 0.388·11-s + 0.267·12-s + 0.277·13-s − 1.12·14-s − 0.757·15-s + 1/4·16-s − 0.413·17-s − 0.505·18-s + 0.146·19-s − 0.708·20-s − 0.851·21-s + 0.274·22-s − 0.399·23-s + 0.189·24-s + 1.00·25-s + 0.196·26-s − 0.916·27-s − 0.796·28-s + ⋯ |
Λ(s)=(=(26s/2ΓC(s)L(s)−Λ(10−s)
Λ(s)=(=(26s/2ΓC(s+9/2)L(s)−Λ(1−s)
Particular Values
L(5) |
= |
0 |
L(21) |
= |
0 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−p4T |
| 13 | 1−p4T |
good | 3 | 1−25pT+p9T2 |
| 5 | 1+1979T+p9T2 |
| 7 | 1+1445pT+p9T2 |
| 11 | 1−18850T+p9T2 |
| 17 | 1+142403T+p9T2 |
| 19 | 1−83302T+p9T2 |
| 23 | 1+23328pT+p9T2 |
| 29 | 1+2600442T+p9T2 |
| 31 | 1+2214004T+p9T2 |
| 37 | 1−18099241T+p9T2 |
| 41 | 1−26812240T+p9T2 |
| 43 | 1+42253475T+p9T2 |
| 47 | 1−35914993T+p9T2 |
| 53 | 1+66514064T+p9T2 |
| 59 | 1+108164002T+p9T2 |
| 61 | 1+207449912T+p9T2 |
| 67 | 1−193015514T+p9T2 |
| 71 | 1+201833497T+p9T2 |
| 73 | 1+121628110T+p9T2 |
| 79 | 1−112871912T+p9T2 |
| 83 | 1−308254212T+p9T2 |
| 89 | 1+6374870T+p9T2 |
| 97 | 1−871266886T+p9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.82018513514779883938816757446, −13.44736350363393059801394475741, −12.30808202967032660883118156330, −11.16718089565018451657033949052, −9.253269094196819735286777872271, −7.71431479179701964605801408256, −6.23085352644144134231919182517, −3.97115450154253890308563411468, −3.00825339531731739911485866313, 0,
3.00825339531731739911485866313, 3.97115450154253890308563411468, 6.23085352644144134231919182517, 7.71431479179701964605801408256, 9.253269094196819735286777872271, 11.16718089565018451657033949052, 12.30808202967032660883118156330, 13.44736350363393059801394475741, 14.82018513514779883938816757446