Properties

Label 26.10.a.c
Level $26$
Weight $10$
Character orbit 26.a
Self dual yes
Analytic conductor $13.391$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [26,10,Mod(1,26)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(26, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("26.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 26 = 2 \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 26.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,16,75] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.3909317403\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 16 q^{2} + 75 q^{3} + 256 q^{4} - 1979 q^{5} + 1200 q^{6} - 10115 q^{7} + 4096 q^{8} - 14058 q^{9} - 31664 q^{10} + 18850 q^{11} + 19200 q^{12} + 28561 q^{13} - 161840 q^{14} - 148425 q^{15} + 65536 q^{16}+ \cdots - 264993300 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
16.0000 75.0000 256.000 −1979.00 1200.00 −10115.0 4096.00 −14058.0 −31664.0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 26.10.a.c 1
3.b odd 2 1 234.10.a.a 1
4.b odd 2 1 208.10.a.b 1
13.b even 2 1 338.10.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.10.a.c 1 1.a even 1 1 trivial
208.10.a.b 1 4.b odd 2 1
234.10.a.a 1 3.b odd 2 1
338.10.a.b 1 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 75 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(26))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 16 \) Copy content Toggle raw display
$3$ \( T - 75 \) Copy content Toggle raw display
$5$ \( T + 1979 \) Copy content Toggle raw display
$7$ \( T + 10115 \) Copy content Toggle raw display
$11$ \( T - 18850 \) Copy content Toggle raw display
$13$ \( T - 28561 \) Copy content Toggle raw display
$17$ \( T + 142403 \) Copy content Toggle raw display
$19$ \( T - 83302 \) Copy content Toggle raw display
$23$ \( T + 536544 \) Copy content Toggle raw display
$29$ \( T + 2600442 \) Copy content Toggle raw display
$31$ \( T + 2214004 \) Copy content Toggle raw display
$37$ \( T - 18099241 \) Copy content Toggle raw display
$41$ \( T - 26812240 \) Copy content Toggle raw display
$43$ \( T + 42253475 \) Copy content Toggle raw display
$47$ \( T - 35914993 \) Copy content Toggle raw display
$53$ \( T + 66514064 \) Copy content Toggle raw display
$59$ \( T + 108164002 \) Copy content Toggle raw display
$61$ \( T + 207449912 \) Copy content Toggle raw display
$67$ \( T - 193015514 \) Copy content Toggle raw display
$71$ \( T + 201833497 \) Copy content Toggle raw display
$73$ \( T + 121628110 \) Copy content Toggle raw display
$79$ \( T - 112871912 \) Copy content Toggle raw display
$83$ \( T - 308254212 \) Copy content Toggle raw display
$89$ \( T + 6374870 \) Copy content Toggle raw display
$97$ \( T - 871266886 \) Copy content Toggle raw display
show more
show less