L(s) = 1 | + (0.866 + 0.5i)3-s + (0.5 − 0.866i)4-s + (−0.258 − 0.965i)7-s + (0.499 + 0.866i)9-s + (0.866 − 0.499i)12-s + 0.517·13-s + (−0.499 − 0.866i)16-s + (−0.707 − 1.22i)19-s + (0.258 − 0.965i)21-s + (0.5 − 0.866i)25-s + 0.999i·27-s + (−0.965 − 0.258i)28-s + (−0.866 − 0.5i)31-s + 0.999·36-s + (0.866 + 1.5i)37-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)3-s + (0.5 − 0.866i)4-s + (−0.258 − 0.965i)7-s + (0.499 + 0.866i)9-s + (0.866 − 0.499i)12-s + 0.517·13-s + (−0.499 − 0.866i)16-s + (−0.707 − 1.22i)19-s + (0.258 − 0.965i)21-s + (0.5 − 0.866i)25-s + 0.999i·27-s + (−0.965 − 0.258i)28-s + (−0.866 − 0.5i)31-s + 0.999·36-s + (0.866 + 1.5i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2541 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.774 + 0.632i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2541 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.774 + 0.632i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.787559429\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.787559429\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 + (0.258 + 0.965i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 - 0.517T + T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.707 + 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - 1.93iT - T^{2} \) |
| 47 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.965 - 1.67i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (-0.965 + 1.67i)T + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + 1.73iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.106857231520610577301139548795, −8.311964990467451010322108694046, −7.45392628828512920840159910525, −6.73634859485431629365376848559, −6.04907228844461449148962903239, −4.79872903325637314232144361571, −4.33240235549259138067695132560, −3.18875883984109171739125623878, −2.37158287278356327046484828911, −1.14170963451098918815630934513,
1.77663919205478782170928055112, 2.44895252372201806151136604707, 3.47068260540940188681416785754, 3.92037935787161410646234953778, 5.45012623381217646680622977957, 6.27407719477535028032281209746, 7.00604132528163165442120674453, 7.70908850625855022064555638634, 8.494435954145039616909919749879, 8.846938469574129937829679245172