L(s) = 1 | + (0.5 − 0.866i)3-s + (−0.5 + 0.866i)4-s + (−0.866 − 0.5i)7-s + (−0.499 − 0.866i)9-s + (0.499 + 0.866i)12-s − 1.73·13-s + (−0.499 − 0.866i)16-s + (−0.866 + 0.499i)21-s + (−0.5 + 0.866i)25-s − 0.999·27-s + (0.866 − 0.499i)28-s + (−0.5 + 0.866i)31-s + 0.999·36-s + (−0.5 − 0.866i)37-s + (−0.866 + 1.49i)39-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)3-s + (−0.5 + 0.866i)4-s + (−0.866 − 0.5i)7-s + (−0.499 − 0.866i)9-s + (0.499 + 0.866i)12-s − 1.73·13-s + (−0.499 − 0.866i)16-s + (−0.866 + 0.499i)21-s + (−0.5 + 0.866i)25-s − 0.999·27-s + (0.866 − 0.499i)28-s + (−0.5 + 0.866i)31-s + 0.999·36-s + (−0.5 − 0.866i)37-s + (−0.866 + 1.49i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2541 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 - 0.0633i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2541 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 - 0.0633i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1944299548\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1944299548\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 + (0.866 + 0.5i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + 1.73T + T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + 1.73T + T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.579608508672570930612890913119, −7.86964327306548030595887580714, −7.09171162499494020801258419024, −6.90906765849760248669704190254, −5.59926636659206104154274711999, −4.63423234785068669534566521831, −3.54212743059437337616221269011, −3.04493592935144394983512087518, −1.95085523612073299686640333303, −0.10978676234213226788710767620,
2.07433171589209253199421299051, 2.89492084903781751331267411186, 3.98569689229862640043562240892, 4.79696788048840205598534849394, 5.41831579134368519716871847577, 6.22537934353792288813758255913, 7.18947985246399559310407866174, 8.203324378031333893256289591515, 8.937746809876331501142072574764, 9.607420252170292440439002810560