Properties

Label 2-25350-1.1-c1-0-1
Degree $2$
Conductor $25350$
Sign $1$
Analytic cond. $202.420$
Root an. cond. $14.2274$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 8-s + 9-s − 3·11-s − 12-s + 16-s − 6·17-s − 18-s + 3·22-s + 9·23-s + 24-s − 27-s − 7·29-s − 31-s − 32-s + 3·33-s + 6·34-s + 36-s − 37-s − 13·43-s − 3·44-s − 9·46-s − 11·47-s − 48-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.904·11-s − 0.288·12-s + 1/4·16-s − 1.45·17-s − 0.235·18-s + 0.639·22-s + 1.87·23-s + 0.204·24-s − 0.192·27-s − 1.29·29-s − 0.179·31-s − 0.176·32-s + 0.522·33-s + 1.02·34-s + 1/6·36-s − 0.164·37-s − 1.98·43-s − 0.452·44-s − 1.32·46-s − 1.60·47-s − 0.144·48-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(25350\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(202.420\)
Root analytic conductor: \(14.2274\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 25350,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3919217051\)
\(L(\frac12)\) \(\approx\) \(0.3919217051\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 \)
13 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 + 7 T + p T^{2} \) 1.29.h
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 13 T + p T^{2} \) 1.43.n
47 \( 1 + 11 T + p T^{2} \) 1.47.l
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 11 T + p T^{2} \) 1.59.al
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.52555170271522, −14.87582281965249, −14.60748932894453, −13.39193485267997, −13.10973409247152, −12.87597281103552, −11.87083273033114, −11.41627641737128, −10.94116347171543, −10.63196731710394, −9.780667588140672, −9.466797061996460, −8.641448727040072, −8.317438211650341, −7.473405254616341, −6.975075936045564, −6.528914811311842, −5.792615770859560, −4.968741059839864, −4.783317143993853, −3.612781044875497, −2.978416387941668, −2.103385938892142, −1.443049424854020, −0.2858137733752167, 0.2858137733752167, 1.443049424854020, 2.103385938892142, 2.978416387941668, 3.612781044875497, 4.783317143993853, 4.968741059839864, 5.792615770859560, 6.528914811311842, 6.975075936045564, 7.473405254616341, 8.317438211650341, 8.641448727040072, 9.466797061996460, 9.780667588140672, 10.63196731710394, 10.94116347171543, 11.41627641737128, 11.87083273033114, 12.87597281103552, 13.10973409247152, 13.39193485267997, 14.60748932894453, 14.87582281965249, 15.52555170271522

Graph of the $Z$-function along the critical line