L(s) = 1 | + 1.09i·2-s + 1.62·3-s + 2.80·4-s + 7.64·5-s + 1.77i·6-s + 6.41i·7-s + 7.43i·8-s − 6.36·9-s + 8.34i·10-s + (−5.22 + 9.68i)11-s + 4.55·12-s − 11.7i·13-s − 7.00·14-s + 12.4·15-s + 3.11·16-s − 28.2i·17-s + ⋯ |
L(s) = 1 | + 0.546i·2-s + 0.541·3-s + 0.701·4-s + 1.52·5-s + 0.295i·6-s + 0.916i·7-s + 0.929i·8-s − 0.707·9-s + 0.834i·10-s + (−0.474 + 0.880i)11-s + 0.379·12-s − 0.901i·13-s − 0.500·14-s + 0.826·15-s + 0.194·16-s − 1.66i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.474 - 0.880i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.474 - 0.880i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.24903 + 1.34227i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.24903 + 1.34227i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 + (5.22 - 9.68i)T \) |
| 23 | \( 1 + 4.79T \) |
good | 2 | \( 1 - 1.09iT - 4T^{2} \) |
| 3 | \( 1 - 1.62T + 9T^{2} \) |
| 5 | \( 1 - 7.64T + 25T^{2} \) |
| 7 | \( 1 - 6.41iT - 49T^{2} \) |
| 13 | \( 1 + 11.7iT - 169T^{2} \) |
| 17 | \( 1 + 28.2iT - 289T^{2} \) |
| 19 | \( 1 - 0.740iT - 361T^{2} \) |
| 29 | \( 1 + 9.49iT - 841T^{2} \) |
| 31 | \( 1 + 46.8T + 961T^{2} \) |
| 37 | \( 1 - 67.1T + 1.36e3T^{2} \) |
| 41 | \( 1 + 10.1iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 53.5iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 10.1T + 2.20e3T^{2} \) |
| 53 | \( 1 + 4.65T + 2.80e3T^{2} \) |
| 59 | \( 1 - 56.0T + 3.48e3T^{2} \) |
| 61 | \( 1 + 13.8iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 4.31T + 4.48e3T^{2} \) |
| 71 | \( 1 - 6.30T + 5.04e3T^{2} \) |
| 73 | \( 1 - 64.0iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 31.1iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 109. iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 93.6T + 7.92e3T^{2} \) |
| 97 | \( 1 - 1.35T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.03000773627543535661265836114, −10.96933937699219480158401724698, −9.816281228978784680112355442036, −9.120582770800307423301389215186, −8.005259919310189470662122089352, −6.98228938323976656558675877019, −5.64385959945664296830016348967, −5.42113783062708624333922860826, −2.70587109447620971747463137789, −2.23776107757652877939482700081,
1.52596548991726592444629850421, 2.60059619554456336775361151038, 3.83156293519026550435063725641, 5.76881454051929699303305776979, 6.43069806996408699942420229663, 7.76683727697879328865884533476, 8.955486768560773663828305990326, 9.890476063088827557006133600518, 10.72725544699549071110605043183, 11.33143811353773539900804399640