Properties

Label 253.3.c.a.208.27
Level $253$
Weight $3$
Character 253.208
Analytic conductor $6.894$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [253,3,Mod(208,253)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("253.208"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(253, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 253 = 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 253.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89375068832\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 208.27
Character \(\chi\) \(=\) 253.208
Dual form 253.3.c.a.208.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.09200i q^{2} +1.62306 q^{3} +2.80754 q^{4} +7.64004 q^{5} +1.77238i q^{6} +6.41879i q^{7} +7.43383i q^{8} -6.36568 q^{9} +8.34293i q^{10} +(-5.22182 + 9.68156i) q^{11} +4.55680 q^{12} -11.7166i q^{13} -7.00932 q^{14} +12.4002 q^{15} +3.11239 q^{16} -28.2618i q^{17} -6.95132i q^{18} +0.740083i q^{19} +21.4497 q^{20} +10.4181i q^{21} +(-10.5723 - 5.70223i) q^{22} -4.79583 q^{23} +12.0656i q^{24} +33.3702 q^{25} +12.7945 q^{26} -24.9394 q^{27} +18.0210i q^{28} -9.49203i q^{29} +13.5411i q^{30} -46.8460 q^{31} +33.1341i q^{32} +(-8.47532 + 15.7138i) q^{33} +30.8619 q^{34} +49.0398i q^{35} -17.8719 q^{36} +67.1068 q^{37} -0.808171 q^{38} -19.0167i q^{39} +56.7948i q^{40} -10.1557i q^{41} -11.3766 q^{42} -53.5537i q^{43} +(-14.6604 + 27.1813i) q^{44} -48.6340 q^{45} -5.23705i q^{46} +10.1611 q^{47} +5.05160 q^{48} +7.79912 q^{49} +36.4403i q^{50} -45.8706i q^{51} -32.8947i q^{52} -4.65727 q^{53} -27.2339i q^{54} +(-39.8949 + 73.9675i) q^{55} -47.7162 q^{56} +1.20120i q^{57} +10.3653 q^{58} +56.0868 q^{59} +34.8141 q^{60} -13.8941i q^{61} -51.1558i q^{62} -40.8599i q^{63} -23.7328 q^{64} -89.5151i q^{65} +(-17.1594 - 9.25506i) q^{66} -4.31938 q^{67} -79.3459i q^{68} -7.78392 q^{69} -53.5515 q^{70} +6.30778 q^{71} -47.3214i q^{72} +64.0503i q^{73} +73.2807i q^{74} +54.1619 q^{75} +2.07781i q^{76} +(-62.1439 - 33.5178i) q^{77} +20.7663 q^{78} -31.1637i q^{79} +23.7788 q^{80} +16.8129 q^{81} +11.0900 q^{82} +109.725i q^{83} +29.2491i q^{84} -215.921i q^{85} +58.4807 q^{86} -15.4061i q^{87} +(-71.9711 - 38.8181i) q^{88} -93.6954 q^{89} -53.1084i q^{90} +75.2063 q^{91} -13.4645 q^{92} -76.0338 q^{93} +11.0959i q^{94} +5.65426i q^{95} +53.7786i q^{96} +1.35617 q^{97} +8.51664i q^{98} +(33.2404 - 61.6297i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 8 q^{3} - 88 q^{4} + 100 q^{9} + 8 q^{14} - 8 q^{15} + 72 q^{16} - 40 q^{20} - 76 q^{22} + 268 q^{25} - 40 q^{26} + 32 q^{27} + 72 q^{31} - 90 q^{33} + 60 q^{34} - 312 q^{36} + 4 q^{37} + 40 q^{38}+ \cdots + 494 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/253\mathbb{Z}\right)^\times\).

\(n\) \(24\) \(166\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.09200i 0.546000i 0.962014 + 0.273000i \(0.0880159\pi\)
−0.962014 + 0.273000i \(0.911984\pi\)
\(3\) 1.62306 0.541020 0.270510 0.962717i \(-0.412808\pi\)
0.270510 + 0.962717i \(0.412808\pi\)
\(4\) 2.80754 0.701884
\(5\) 7.64004 1.52801 0.764004 0.645212i \(-0.223231\pi\)
0.764004 + 0.645212i \(0.223231\pi\)
\(6\) 1.77238i 0.295397i
\(7\) 6.41879i 0.916970i 0.888702 + 0.458485i \(0.151608\pi\)
−0.888702 + 0.458485i \(0.848392\pi\)
\(8\) 7.43383i 0.929229i
\(9\) −6.36568 −0.707297
\(10\) 8.34293i 0.834293i
\(11\) −5.22182 + 9.68156i −0.474711 + 0.880142i
\(12\) 4.55680 0.379733
\(13\) 11.7166i 0.901275i −0.892707 0.450638i \(-0.851197\pi\)
0.892707 0.450638i \(-0.148803\pi\)
\(14\) −7.00932 −0.500666
\(15\) 12.4002 0.826683
\(16\) 3.11239 0.194525
\(17\) 28.2618i 1.66246i −0.555931 0.831229i \(-0.687638\pi\)
0.555931 0.831229i \(-0.312362\pi\)
\(18\) 6.95132i 0.386184i
\(19\) 0.740083i 0.0389517i 0.999810 + 0.0194759i \(0.00619975\pi\)
−0.999810 + 0.0194759i \(0.993800\pi\)
\(20\) 21.4497 1.07248
\(21\) 10.4181i 0.496099i
\(22\) −10.5723 5.70223i −0.480558 0.259192i
\(23\) −4.79583 −0.208514
\(24\) 12.0656i 0.502731i
\(25\) 33.3702 1.33481
\(26\) 12.7945 0.492096
\(27\) −24.9394 −0.923682
\(28\) 18.0210i 0.643606i
\(29\) 9.49203i 0.327311i −0.986518 0.163656i \(-0.947671\pi\)
0.986518 0.163656i \(-0.0523286\pi\)
\(30\) 13.5411i 0.451369i
\(31\) −46.8460 −1.51116 −0.755580 0.655056i \(-0.772645\pi\)
−0.755580 + 0.655056i \(0.772645\pi\)
\(32\) 33.1341i 1.03544i
\(33\) −8.47532 + 15.7138i −0.256828 + 0.476174i
\(34\) 30.8619 0.907702
\(35\) 49.0398i 1.40114i
\(36\) −17.8719 −0.496440
\(37\) 67.1068 1.81370 0.906849 0.421456i \(-0.138481\pi\)
0.906849 + 0.421456i \(0.138481\pi\)
\(38\) −0.808171 −0.0212677
\(39\) 19.0167i 0.487608i
\(40\) 56.7948i 1.41987i
\(41\) 10.1557i 0.247700i −0.992301 0.123850i \(-0.960476\pi\)
0.992301 0.123850i \(-0.0395241\pi\)
\(42\) −11.3766 −0.270870
\(43\) 53.5537i 1.24544i −0.782447 0.622718i \(-0.786029\pi\)
0.782447 0.622718i \(-0.213971\pi\)
\(44\) −14.6604 + 27.1813i −0.333192 + 0.617757i
\(45\) −48.6340 −1.08076
\(46\) 5.23705i 0.113849i
\(47\) 10.1611 0.216193 0.108096 0.994140i \(-0.465525\pi\)
0.108096 + 0.994140i \(0.465525\pi\)
\(48\) 5.05160 0.105242
\(49\) 7.79912 0.159166
\(50\) 36.4403i 0.728806i
\(51\) 45.8706i 0.899423i
\(52\) 32.8947i 0.632590i
\(53\) −4.65727 −0.0878731 −0.0439366 0.999034i \(-0.513990\pi\)
−0.0439366 + 0.999034i \(0.513990\pi\)
\(54\) 27.2339i 0.504331i
\(55\) −39.8949 + 73.9675i −0.725362 + 1.34486i
\(56\) −47.7162 −0.852075
\(57\) 1.20120i 0.0210737i
\(58\) 10.3653 0.178712
\(59\) 56.0868 0.950623 0.475311 0.879818i \(-0.342335\pi\)
0.475311 + 0.879818i \(0.342335\pi\)
\(60\) 34.8141 0.580235
\(61\) 13.8941i 0.227771i −0.993494 0.113886i \(-0.963670\pi\)
0.993494 0.113886i \(-0.0363298\pi\)
\(62\) 51.1558i 0.825094i
\(63\) 40.8599i 0.648571i
\(64\) −23.7328 −0.370826
\(65\) 89.5151i 1.37716i
\(66\) −17.1594 9.25506i −0.259991 0.140228i
\(67\) −4.31938 −0.0644683 −0.0322341 0.999480i \(-0.510262\pi\)
−0.0322341 + 0.999480i \(0.510262\pi\)
\(68\) 79.3459i 1.16685i
\(69\) −7.78392 −0.112810
\(70\) −53.5515 −0.765021
\(71\) 6.30778 0.0888420 0.0444210 0.999013i \(-0.485856\pi\)
0.0444210 + 0.999013i \(0.485856\pi\)
\(72\) 47.3214i 0.657241i
\(73\) 64.0503i 0.877402i 0.898633 + 0.438701i \(0.144561\pi\)
−0.898633 + 0.438701i \(0.855439\pi\)
\(74\) 73.2807i 0.990279i
\(75\) 54.1619 0.722158
\(76\) 2.07781i 0.0273396i
\(77\) −62.1439 33.5178i −0.807064 0.435295i
\(78\) 20.7663 0.266234
\(79\) 31.1637i 0.394478i −0.980355 0.197239i \(-0.936803\pi\)
0.980355 0.197239i \(-0.0631975\pi\)
\(80\) 23.7788 0.297235
\(81\) 16.8129 0.207567
\(82\) 11.0900 0.135244
\(83\) 109.725i 1.32199i 0.750391 + 0.660994i \(0.229865\pi\)
−0.750391 + 0.660994i \(0.770135\pi\)
\(84\) 29.2491i 0.348204i
\(85\) 215.921i 2.54025i
\(86\) 58.4807 0.680008
\(87\) 15.4061i 0.177082i
\(88\) −71.9711 38.8181i −0.817853 0.441115i
\(89\) −93.6954 −1.05276 −0.526379 0.850250i \(-0.676451\pi\)
−0.526379 + 0.850250i \(0.676451\pi\)
\(90\) 53.1084i 0.590093i
\(91\) 75.2063 0.826442
\(92\) −13.4645 −0.146353
\(93\) −76.0338 −0.817568
\(94\) 11.0959i 0.118041i
\(95\) 5.65426i 0.0595186i
\(96\) 53.7786i 0.560193i
\(97\) 1.35617 0.0139812 0.00699058 0.999976i \(-0.497775\pi\)
0.00699058 + 0.999976i \(0.497775\pi\)
\(98\) 8.51664i 0.0869045i
\(99\) 33.2404 61.6297i 0.335762 0.622522i
\(100\) 93.6880 0.936880
\(101\) 1.02162i 0.0101150i −0.999987 0.00505751i \(-0.998390\pi\)
0.999987 0.00505751i \(-0.00160986\pi\)
\(102\) 50.0907 0.491085
\(103\) −137.376 −1.33375 −0.666874 0.745170i \(-0.732368\pi\)
−0.666874 + 0.745170i \(0.732368\pi\)
\(104\) 87.0991 0.837491
\(105\) 79.5946i 0.758044i
\(106\) 5.08575i 0.0479787i
\(107\) 147.336i 1.37697i 0.725250 + 0.688486i \(0.241724\pi\)
−0.725250 + 0.688486i \(0.758276\pi\)
\(108\) −70.0183 −0.648317
\(109\) 204.845i 1.87931i −0.342122 0.939656i \(-0.611146\pi\)
0.342122 0.939656i \(-0.388854\pi\)
\(110\) −80.7726 43.5652i −0.734296 0.396048i
\(111\) 108.918 0.981247
\(112\) 19.9778i 0.178373i
\(113\) −120.078 −1.06263 −0.531317 0.847173i \(-0.678303\pi\)
−0.531317 + 0.847173i \(0.678303\pi\)
\(114\) −1.31171 −0.0115062
\(115\) −36.6403 −0.318612
\(116\) 26.6492i 0.229734i
\(117\) 74.5839i 0.637469i
\(118\) 61.2468i 0.519040i
\(119\) 181.406 1.52442
\(120\) 92.1813i 0.768178i
\(121\) −66.4653 101.111i −0.549300 0.835625i
\(122\) 15.1723 0.124363
\(123\) 16.4833i 0.134010i
\(124\) −131.522 −1.06066
\(125\) 63.9487 0.511590
\(126\) 44.6191 0.354120
\(127\) 235.090i 1.85110i −0.378624 0.925551i \(-0.623603\pi\)
0.378624 0.925551i \(-0.376397\pi\)
\(128\) 106.620i 0.832969i
\(129\) 86.9209i 0.673806i
\(130\) 97.7505 0.751927
\(131\) 5.90984i 0.0451133i −0.999746 0.0225566i \(-0.992819\pi\)
0.999746 0.0225566i \(-0.00718061\pi\)
\(132\) −23.7948 + 44.1169i −0.180263 + 0.334219i
\(133\) −4.75044 −0.0357176
\(134\) 4.71676i 0.0351997i
\(135\) −190.538 −1.41139
\(136\) 210.093 1.54480
\(137\) −50.7013 −0.370083 −0.185041 0.982731i \(-0.559242\pi\)
−0.185041 + 0.982731i \(0.559242\pi\)
\(138\) 8.50005i 0.0615945i
\(139\) 49.2168i 0.354078i 0.984204 + 0.177039i \(0.0566519\pi\)
−0.984204 + 0.177039i \(0.943348\pi\)
\(140\) 137.681i 0.983436i
\(141\) 16.4920 0.116965
\(142\) 6.88810i 0.0485077i
\(143\) 113.435 + 61.1818i 0.793250 + 0.427845i
\(144\) −19.8125 −0.137587
\(145\) 72.5195i 0.500134i
\(146\) −69.9430 −0.479062
\(147\) 12.6584 0.0861118
\(148\) 188.405 1.27300
\(149\) 213.132i 1.43042i 0.698911 + 0.715208i \(0.253668\pi\)
−0.698911 + 0.715208i \(0.746332\pi\)
\(150\) 59.1448i 0.394298i
\(151\) 93.7847i 0.621091i −0.950559 0.310545i \(-0.899488\pi\)
0.950559 0.310545i \(-0.100512\pi\)
\(152\) −5.50165 −0.0361951
\(153\) 179.905i 1.17585i
\(154\) 36.6014 67.8612i 0.237671 0.440657i
\(155\) −357.905 −2.30906
\(156\) 53.3901i 0.342244i
\(157\) −258.359 −1.64560 −0.822799 0.568332i \(-0.807589\pi\)
−0.822799 + 0.568332i \(0.807589\pi\)
\(158\) 34.0308 0.215385
\(159\) −7.55904 −0.0475411
\(160\) 253.146i 1.58216i
\(161\) 30.7834i 0.191202i
\(162\) 18.3597i 0.113331i
\(163\) 92.2391 0.565884 0.282942 0.959137i \(-0.408690\pi\)
0.282942 + 0.959137i \(0.408690\pi\)
\(164\) 28.5124i 0.173856i
\(165\) −64.7518 + 120.054i −0.392435 + 0.727598i
\(166\) −119.820 −0.721806
\(167\) 129.704i 0.776668i 0.921519 + 0.388334i \(0.126949\pi\)
−0.921519 + 0.388334i \(0.873051\pi\)
\(168\) −77.4463 −0.460990
\(169\) 31.7218 0.187703
\(170\) 235.786 1.38698
\(171\) 4.71113i 0.0275505i
\(172\) 150.354i 0.874151i
\(173\) 271.696i 1.57049i 0.619182 + 0.785247i \(0.287464\pi\)
−0.619182 + 0.785247i \(0.712536\pi\)
\(174\) 16.8235 0.0966868
\(175\) 214.196i 1.22398i
\(176\) −16.2523 + 30.1328i −0.0923429 + 0.171209i
\(177\) 91.0322 0.514306
\(178\) 102.315i 0.574806i
\(179\) 157.143 0.877894 0.438947 0.898513i \(-0.355352\pi\)
0.438947 + 0.898513i \(0.355352\pi\)
\(180\) −136.542 −0.758565
\(181\) 130.345 0.720140 0.360070 0.932925i \(-0.382753\pi\)
0.360070 + 0.932925i \(0.382753\pi\)
\(182\) 82.1253i 0.451238i
\(183\) 22.5509i 0.123229i
\(184\) 35.6514i 0.193758i
\(185\) 512.699 2.77134
\(186\) 83.0289i 0.446392i
\(187\) 273.618 + 147.578i 1.46320 + 0.789186i
\(188\) 28.5275 0.151742
\(189\) 160.081i 0.846989i
\(190\) −6.17446 −0.0324971
\(191\) −5.67086 −0.0296904 −0.0148452 0.999890i \(-0.504726\pi\)
−0.0148452 + 0.999890i \(0.504726\pi\)
\(192\) −38.5198 −0.200624
\(193\) 267.014i 1.38349i 0.722140 + 0.691747i \(0.243159\pi\)
−0.722140 + 0.691747i \(0.756841\pi\)
\(194\) 1.48094i 0.00763371i
\(195\) 145.288i 0.745069i
\(196\) 21.8963 0.111716
\(197\) 63.8217i 0.323968i −0.986793 0.161984i \(-0.948211\pi\)
0.986793 0.161984i \(-0.0517893\pi\)
\(198\) 67.2996 + 36.2985i 0.339897 + 0.183326i
\(199\) −253.734 −1.27504 −0.637522 0.770432i \(-0.720041\pi\)
−0.637522 + 0.770432i \(0.720041\pi\)
\(200\) 248.068i 1.24034i
\(201\) −7.01061 −0.0348786
\(202\) 1.11561 0.00552280
\(203\) 60.9273 0.300135
\(204\) 128.783i 0.631290i
\(205\) 77.5898i 0.378487i
\(206\) 150.015i 0.728227i
\(207\) 30.5287 0.147482
\(208\) 36.4666i 0.175320i
\(209\) −7.16516 3.86458i −0.0342831 0.0184908i
\(210\) −86.9173 −0.413892
\(211\) 75.1073i 0.355959i 0.984034 + 0.177979i \(0.0569560\pi\)
−0.984034 + 0.177979i \(0.943044\pi\)
\(212\) −13.0755 −0.0616767
\(213\) 10.2379 0.0480653
\(214\) −160.891 −0.751827
\(215\) 409.153i 1.90304i
\(216\) 185.395i 0.858312i
\(217\) 300.694i 1.38569i
\(218\) 223.691 1.02610
\(219\) 103.958i 0.474692i
\(220\) −112.006 + 207.666i −0.509120 + 0.943938i
\(221\) −331.131 −1.49833
\(222\) 118.939i 0.535761i
\(223\) −165.774 −0.743380 −0.371690 0.928357i \(-0.621222\pi\)
−0.371690 + 0.928357i \(0.621222\pi\)
\(224\) −212.681 −0.949467
\(225\) −212.424 −0.944106
\(226\) 131.125i 0.580198i
\(227\) 335.726i 1.47897i 0.673174 + 0.739484i \(0.264930\pi\)
−0.673174 + 0.739484i \(0.735070\pi\)
\(228\) 3.37241i 0.0147913i
\(229\) 289.563 1.26447 0.632234 0.774778i \(-0.282138\pi\)
0.632234 + 0.774778i \(0.282138\pi\)
\(230\) 40.0113i 0.173962i
\(231\) −100.863 54.4013i −0.436638 0.235504i
\(232\) 70.5621 0.304147
\(233\) 121.192i 0.520138i −0.965590 0.260069i \(-0.916255\pi\)
0.965590 0.260069i \(-0.0837454\pi\)
\(234\) −81.4457 −0.348058
\(235\) 77.6309 0.330344
\(236\) 157.466 0.667227
\(237\) 50.5806i 0.213420i
\(238\) 198.096i 0.832336i
\(239\) 359.123i 1.50261i 0.659958 + 0.751303i \(0.270574\pi\)
−0.659958 + 0.751303i \(0.729426\pi\)
\(240\) 38.5944 0.160810
\(241\) 249.115i 1.03367i −0.856085 0.516836i \(-0.827110\pi\)
0.856085 0.516836i \(-0.172890\pi\)
\(242\) 110.413 72.5801i 0.456252 0.299918i
\(243\) 251.743 1.03598
\(244\) 39.0080i 0.159869i
\(245\) 59.5856 0.243206
\(246\) 17.9998 0.0731697
\(247\) 8.67124 0.0351062
\(248\) 348.245i 1.40421i
\(249\) 178.090i 0.715223i
\(250\) 69.8320i 0.279328i
\(251\) −172.223 −0.686146 −0.343073 0.939309i \(-0.611468\pi\)
−0.343073 + 0.939309i \(0.611468\pi\)
\(252\) 114.716i 0.455221i
\(253\) 25.0430 46.4311i 0.0989840 0.183522i
\(254\) 256.718 1.01070
\(255\) 350.453i 1.37433i
\(256\) −211.360 −0.825627
\(257\) 268.046 1.04298 0.521490 0.853258i \(-0.325377\pi\)
0.521490 + 0.853258i \(0.325377\pi\)
\(258\) 94.9177 0.367898
\(259\) 430.745i 1.66311i
\(260\) 251.317i 0.966603i
\(261\) 60.4232i 0.231506i
\(262\) 6.45355 0.0246319
\(263\) 213.813i 0.812977i −0.913656 0.406488i \(-0.866753\pi\)
0.913656 0.406488i \(-0.133247\pi\)
\(264\) −116.813 63.0041i −0.442475 0.238652i
\(265\) −35.5818 −0.134271
\(266\) 5.18748i 0.0195018i
\(267\) −152.073 −0.569563
\(268\) −12.1268 −0.0452492
\(269\) −233.791 −0.869111 −0.434555 0.900645i \(-0.643094\pi\)
−0.434555 + 0.900645i \(0.643094\pi\)
\(270\) 208.068i 0.770621i
\(271\) 170.435i 0.628910i −0.949272 0.314455i \(-0.898178\pi\)
0.949272 0.314455i \(-0.101822\pi\)
\(272\) 87.9618i 0.323389i
\(273\) 122.064 0.447122
\(274\) 55.3659i 0.202065i
\(275\) −174.253 + 323.076i −0.633648 + 1.17482i
\(276\) −21.8536 −0.0791798
\(277\) 291.870i 1.05368i 0.849964 + 0.526841i \(0.176624\pi\)
−0.849964 + 0.526841i \(0.823376\pi\)
\(278\) −53.7448 −0.193327
\(279\) 298.206 1.06884
\(280\) −364.554 −1.30198
\(281\) 177.126i 0.630341i −0.949035 0.315171i \(-0.897938\pi\)
0.949035 0.315171i \(-0.102062\pi\)
\(282\) 18.0093i 0.0638627i
\(283\) 139.267i 0.492110i −0.969256 0.246055i \(-0.920866\pi\)
0.969256 0.246055i \(-0.0791344\pi\)
\(284\) 17.7093 0.0623567
\(285\) 9.17721i 0.0322007i
\(286\) −66.8106 + 123.871i −0.233603 + 0.433115i
\(287\) 65.1872 0.227133
\(288\) 210.921i 0.732363i
\(289\) −509.728 −1.76376
\(290\) 79.1913 0.273073
\(291\) 2.20115 0.00756409
\(292\) 179.824i 0.615834i
\(293\) 454.142i 1.54997i 0.631978 + 0.774986i \(0.282243\pi\)
−0.631978 + 0.774986i \(0.717757\pi\)
\(294\) 13.8230i 0.0470171i
\(295\) 428.505 1.45256
\(296\) 498.861i 1.68534i
\(297\) 130.229 241.452i 0.438482 0.812971i
\(298\) −232.740 −0.781008
\(299\) 56.1907i 0.187929i
\(300\) 152.061 0.506871
\(301\) 343.750 1.14203
\(302\) 102.413 0.339116
\(303\) 1.65815i 0.00547243i
\(304\) 2.30343i 0.00757707i
\(305\) 106.151i 0.348036i
\(306\) −196.457 −0.642015
\(307\) 160.556i 0.522982i 0.965206 + 0.261491i \(0.0842142\pi\)
−0.965206 + 0.261491i \(0.915786\pi\)
\(308\) −174.471 94.1023i −0.566465 0.305527i
\(309\) −222.970 −0.721585
\(310\) 390.832i 1.26075i
\(311\) −151.792 −0.488077 −0.244038 0.969766i \(-0.578472\pi\)
−0.244038 + 0.969766i \(0.578472\pi\)
\(312\) 141.367 0.453099
\(313\) −518.355 −1.65609 −0.828043 0.560664i \(-0.810546\pi\)
−0.828043 + 0.560664i \(0.810546\pi\)
\(314\) 282.128i 0.898497i
\(315\) 312.172i 0.991021i
\(316\) 87.4933i 0.276878i
\(317\) −160.589 −0.506591 −0.253295 0.967389i \(-0.581514\pi\)
−0.253295 + 0.967389i \(0.581514\pi\)
\(318\) 8.25447i 0.0259575i
\(319\) 91.8976 + 49.5656i 0.288080 + 0.155378i
\(320\) −181.320 −0.566624
\(321\) 239.135i 0.744970i
\(322\) 33.6155 0.104396
\(323\) 20.9161 0.0647556
\(324\) 47.2028 0.145688
\(325\) 390.985i 1.20303i
\(326\) 100.725i 0.308973i
\(327\) 332.476i 1.01675i
\(328\) 75.4956 0.230170
\(329\) 65.2217i 0.198242i
\(330\) −131.099 70.7090i −0.397269 0.214270i
\(331\) 170.115 0.513941 0.256971 0.966419i \(-0.417276\pi\)
0.256971 + 0.966419i \(0.417276\pi\)
\(332\) 308.057i 0.927883i
\(333\) −427.180 −1.28282
\(334\) −141.636 −0.424061
\(335\) −33.0002 −0.0985081
\(336\) 32.4252i 0.0965035i
\(337\) 439.608i 1.30447i −0.758015 0.652237i \(-0.773831\pi\)
0.758015 0.652237i \(-0.226169\pi\)
\(338\) 34.6402i 0.102486i
\(339\) −194.893 −0.574906
\(340\) 606.206i 1.78296i
\(341\) 244.621 453.542i 0.717364 1.33004i
\(342\) 5.14455 0.0150426
\(343\) 364.582i 1.06292i
\(344\) 398.109 1.15729
\(345\) −59.4695 −0.172375
\(346\) −296.692 −0.857490
\(347\) 276.110i 0.795705i 0.917449 + 0.397853i \(0.130244\pi\)
−0.917449 + 0.397853i \(0.869756\pi\)
\(348\) 43.2532i 0.124291i
\(349\) 458.907i 1.31492i 0.753489 + 0.657460i \(0.228369\pi\)
−0.753489 + 0.657460i \(0.771631\pi\)
\(350\) −233.903 −0.668293
\(351\) 292.205i 0.832492i
\(352\) −320.789 173.020i −0.911334 0.491534i
\(353\) 57.7569 0.163617 0.0818087 0.996648i \(-0.473930\pi\)
0.0818087 + 0.996648i \(0.473930\pi\)
\(354\) 99.4072i 0.280811i
\(355\) 48.1917 0.135751
\(356\) −263.053 −0.738913
\(357\) 294.434 0.824744
\(358\) 171.600i 0.479330i
\(359\) 683.381i 1.90357i −0.306767 0.951785i \(-0.599247\pi\)
0.306767 0.951785i \(-0.400753\pi\)
\(360\) 361.537i 1.00427i
\(361\) 360.452 0.998483
\(362\) 142.337i 0.393197i
\(363\) −107.877 164.109i −0.297182 0.452090i
\(364\) 211.144 0.580067
\(365\) 489.347i 1.34068i
\(366\) 24.6256 0.0672830
\(367\) 529.091 1.44167 0.720833 0.693109i \(-0.243760\pi\)
0.720833 + 0.693109i \(0.243760\pi\)
\(368\) −14.9265 −0.0405612
\(369\) 64.6478i 0.175197i
\(370\) 559.867i 1.51315i
\(371\) 29.8941i 0.0805770i
\(372\) −213.468 −0.573838
\(373\) 420.707i 1.12790i −0.825809 0.563950i \(-0.809281\pi\)
0.825809 0.563950i \(-0.190719\pi\)
\(374\) −161.155 + 298.791i −0.430896 + 0.798907i
\(375\) 103.793 0.276780
\(376\) 75.5356i 0.200892i
\(377\) −111.214 −0.294998
\(378\) 174.808 0.462456
\(379\) 188.323 0.496896 0.248448 0.968645i \(-0.420080\pi\)
0.248448 + 0.968645i \(0.420080\pi\)
\(380\) 15.8745i 0.0417751i
\(381\) 381.565i 1.00148i
\(382\) 6.19258i 0.0162110i
\(383\) −250.445 −0.653904 −0.326952 0.945041i \(-0.606022\pi\)
−0.326952 + 0.945041i \(0.606022\pi\)
\(384\) 173.051i 0.450653i
\(385\) −474.782 256.077i −1.23320 0.665135i
\(386\) −291.580 −0.755388
\(387\) 340.906i 0.880893i
\(388\) 3.80750 0.00981315
\(389\) 618.618 1.59028 0.795139 0.606428i \(-0.207398\pi\)
0.795139 + 0.606428i \(0.207398\pi\)
\(390\) 158.655 0.406808
\(391\) 135.539i 0.346646i
\(392\) 57.9773i 0.147901i
\(393\) 9.59203i 0.0244072i
\(394\) 69.6933 0.176887
\(395\) 238.092i 0.602765i
\(396\) 93.3236 173.027i 0.235666 0.436938i
\(397\) 669.346 1.68601 0.843005 0.537906i \(-0.180785\pi\)
0.843005 + 0.537906i \(0.180785\pi\)
\(398\) 277.077i 0.696174i
\(399\) −7.71025 −0.0193239
\(400\) 103.861 0.259653
\(401\) 118.969 0.296681 0.148341 0.988936i \(-0.452607\pi\)
0.148341 + 0.988936i \(0.452607\pi\)
\(402\) 7.65558i 0.0190437i
\(403\) 548.874i 1.36197i
\(404\) 2.86823i 0.00709957i
\(405\) 128.451 0.317164
\(406\) 66.5327i 0.163874i
\(407\) −350.419 + 649.699i −0.860981 + 1.59631i
\(408\) 340.994 0.835770
\(409\) 132.590i 0.324180i 0.986776 + 0.162090i \(0.0518235\pi\)
−0.986776 + 0.162090i \(0.948176\pi\)
\(410\) 84.7281 0.206654
\(411\) −82.2913 −0.200222
\(412\) −385.688 −0.936137
\(413\) 360.009i 0.871693i
\(414\) 33.3374i 0.0805250i
\(415\) 838.304i 2.02001i
\(416\) 388.218 0.933216
\(417\) 79.8819i 0.191563i
\(418\) 4.22012 7.82436i 0.0100960 0.0187186i
\(419\) −134.730 −0.321550 −0.160775 0.986991i \(-0.551399\pi\)
−0.160775 + 0.986991i \(0.551399\pi\)
\(420\) 223.465i 0.532059i
\(421\) −142.606 −0.338732 −0.169366 0.985553i \(-0.554172\pi\)
−0.169366 + 0.985553i \(0.554172\pi\)
\(422\) −82.0172 −0.194353
\(423\) −64.6820 −0.152912
\(424\) 34.6214i 0.0816542i
\(425\) 943.101i 2.21906i
\(426\) 11.1798i 0.0262437i
\(427\) 89.1830 0.208860
\(428\) 413.651i 0.966474i
\(429\) 184.111 + 99.3018i 0.429164 + 0.231473i
\(430\) 446.795 1.03906
\(431\) 664.557i 1.54190i −0.636898 0.770948i \(-0.719783\pi\)
0.636898 0.770948i \(-0.280217\pi\)
\(432\) −77.6213 −0.179679
\(433\) −251.446 −0.580707 −0.290353 0.956920i \(-0.593773\pi\)
−0.290353 + 0.956920i \(0.593773\pi\)
\(434\) 328.358 0.756586
\(435\) 117.703i 0.270583i
\(436\) 575.109i 1.31906i
\(437\) 3.54931i 0.00812200i
\(438\) −113.522 −0.259182
\(439\) 496.366i 1.13067i 0.824860 + 0.565337i \(0.191254\pi\)
−0.824860 + 0.565337i \(0.808746\pi\)
\(440\) −549.862 296.572i −1.24969 0.674027i
\(441\) −49.6467 −0.112577
\(442\) 361.596i 0.818089i
\(443\) 735.902 1.66118 0.830589 0.556886i \(-0.188004\pi\)
0.830589 + 0.556886i \(0.188004\pi\)
\(444\) 305.792 0.688721
\(445\) −715.836 −1.60862
\(446\) 181.025i 0.405886i
\(447\) 345.926i 0.773884i
\(448\) 152.336i 0.340036i
\(449\) 741.308 1.65102 0.825510 0.564387i \(-0.190887\pi\)
0.825510 + 0.564387i \(0.190887\pi\)
\(450\) 231.967i 0.515482i
\(451\) 98.3229 + 53.0311i 0.218011 + 0.117586i
\(452\) −337.122 −0.745845
\(453\) 152.218i 0.336023i
\(454\) −366.612 −0.807516
\(455\) 574.579 1.26281
\(456\) −8.92951 −0.0195823
\(457\) 575.862i 1.26009i 0.776558 + 0.630046i \(0.216964\pi\)
−0.776558 + 0.630046i \(0.783036\pi\)
\(458\) 316.203i 0.690400i
\(459\) 704.832i 1.53558i
\(460\) −102.869 −0.223628
\(461\) 348.384i 0.755713i 0.925864 + 0.377857i \(0.123339\pi\)
−0.925864 + 0.377857i \(0.876661\pi\)
\(462\) 59.4063 110.143i 0.128585 0.238404i
\(463\) −62.7153 −0.135454 −0.0677271 0.997704i \(-0.521575\pi\)
−0.0677271 + 0.997704i \(0.521575\pi\)
\(464\) 29.5429i 0.0636701i
\(465\) −580.901 −1.24925
\(466\) 132.342 0.283996
\(467\) 722.228 1.54653 0.773264 0.634085i \(-0.218623\pi\)
0.773264 + 0.634085i \(0.218623\pi\)
\(468\) 209.397i 0.447429i
\(469\) 27.7252i 0.0591155i
\(470\) 84.7729i 0.180368i
\(471\) −419.332 −0.890302
\(472\) 416.939i 0.883346i
\(473\) 518.484 + 279.648i 1.09616 + 0.591221i
\(474\) 55.2341 0.116528
\(475\) 24.6967i 0.0519931i
\(476\) 509.305 1.06997
\(477\) 29.6467 0.0621524
\(478\) −392.162 −0.820423
\(479\) 632.481i 1.32042i 0.751081 + 0.660210i \(0.229533\pi\)
−0.751081 + 0.660210i \(0.770467\pi\)
\(480\) 410.870i 0.855980i
\(481\) 786.262i 1.63464i
\(482\) 272.034 0.564385
\(483\) 49.9634i 0.103444i
\(484\) −186.604 283.872i −0.385545 0.586512i
\(485\) 10.3612 0.0213633
\(486\) 274.904i 0.565645i
\(487\) 586.950 1.20524 0.602618 0.798030i \(-0.294124\pi\)
0.602618 + 0.798030i \(0.294124\pi\)
\(488\) 103.286 0.211652
\(489\) 149.710 0.306155
\(490\) 65.0675i 0.132791i
\(491\) 666.289i 1.35700i −0.734598 0.678502i \(-0.762629\pi\)
0.734598 0.678502i \(-0.237371\pi\)
\(492\) 46.2774i 0.0940597i
\(493\) −268.262 −0.544141
\(494\) 9.46900i 0.0191680i
\(495\) 253.958 470.853i 0.513046 0.951219i
\(496\) −145.803 −0.293958
\(497\) 40.4883i 0.0814654i
\(498\) −194.475 −0.390512
\(499\) −146.172 −0.292930 −0.146465 0.989216i \(-0.546790\pi\)
−0.146465 + 0.989216i \(0.546790\pi\)
\(500\) 179.538 0.359076
\(501\) 210.517i 0.420193i
\(502\) 188.067i 0.374636i
\(503\) 416.063i 0.827164i 0.910467 + 0.413582i \(0.135722\pi\)
−0.910467 + 0.413582i \(0.864278\pi\)
\(504\) 303.746 0.602670
\(505\) 7.80520i 0.0154558i
\(506\) 50.7028 + 27.3469i 0.100203 + 0.0540453i
\(507\) 51.4864 0.101551
\(508\) 660.023i 1.29926i
\(509\) −397.969 −0.781865 −0.390932 0.920419i \(-0.627847\pi\)
−0.390932 + 0.920419i \(0.627847\pi\)
\(510\) 382.695 0.750382
\(511\) −411.126 −0.804551
\(512\) 195.674i 0.382176i
\(513\) 18.4572i 0.0359790i
\(514\) 292.706i 0.569467i
\(515\) −1049.56 −2.03798
\(516\) 244.034i 0.472933i
\(517\) −53.0592 + 98.3749i −0.102629 + 0.190280i
\(518\) −470.373 −0.908057
\(519\) 440.978i 0.849669i
\(520\) 665.440 1.27969
\(521\) −916.115 −1.75838 −0.879189 0.476473i \(-0.841915\pi\)
−0.879189 + 0.476473i \(0.841915\pi\)
\(522\) −65.9821 −0.126403
\(523\) 671.538i 1.28401i −0.766700 0.642006i \(-0.778103\pi\)
0.766700 0.642006i \(-0.221897\pi\)
\(524\) 16.5921i 0.0316643i
\(525\) 347.654i 0.662197i
\(526\) 233.484 0.443885
\(527\) 1323.95i 2.51224i
\(528\) −26.3785 + 48.9074i −0.0499594 + 0.0926276i
\(529\) 23.0000 0.0434783
\(530\) 38.8553i 0.0733119i
\(531\) −357.030 −0.672373
\(532\) −13.3370 −0.0250696
\(533\) −118.990 −0.223245
\(534\) 166.064i 0.310981i
\(535\) 1125.65i 2.10402i
\(536\) 32.1095i 0.0599058i
\(537\) 255.053 0.474958
\(538\) 255.300i 0.474535i
\(539\) −40.7256 + 75.5076i −0.0755576 + 0.140088i
\(540\) −534.942 −0.990634
\(541\) 754.982i 1.39553i −0.716326 0.697765i \(-0.754178\pi\)
0.716326 0.697765i \(-0.245822\pi\)
\(542\) 186.115 0.343385
\(543\) 211.558 0.389610
\(544\) 936.427 1.72137
\(545\) 1565.02i 2.87160i
\(546\) 133.294i 0.244129i
\(547\) 433.105i 0.791783i −0.918297 0.395892i \(-0.870436\pi\)
0.918297 0.395892i \(-0.129564\pi\)
\(548\) −142.346 −0.259755
\(549\) 88.4450i 0.161102i
\(550\) −352.799 190.284i −0.641452 0.345972i
\(551\) 7.02489 0.0127493
\(552\) 57.8644i 0.104827i
\(553\) 200.034 0.361724
\(554\) −318.722 −0.575310
\(555\) 832.141 1.49935
\(556\) 138.178i 0.248522i
\(557\) 26.3908i 0.0473802i 0.999719 + 0.0236901i \(0.00754150\pi\)
−0.999719 + 0.0236901i \(0.992458\pi\)
\(558\) 325.641i 0.583586i
\(559\) −627.466 −1.12248
\(560\) 152.631i 0.272556i
\(561\) 444.099 + 239.528i 0.791620 + 0.426966i
\(562\) 193.422 0.344167
\(563\) 144.090i 0.255933i 0.991778 + 0.127967i \(0.0408451\pi\)
−0.991778 + 0.127967i \(0.959155\pi\)
\(564\) 46.3019 0.0820955
\(565\) −917.397 −1.62371
\(566\) 152.080 0.268692
\(567\) 107.919i 0.190332i
\(568\) 46.8910i 0.0825545i
\(569\) 723.390i 1.27134i −0.771963 0.635668i \(-0.780725\pi\)
0.771963 0.635668i \(-0.219275\pi\)
\(570\) −10.0215 −0.0175816
\(571\) 126.844i 0.222143i 0.993812 + 0.111071i \(0.0354282\pi\)
−0.993812 + 0.111071i \(0.964572\pi\)
\(572\) 318.472 + 171.770i 0.556769 + 0.300297i
\(573\) −9.20415 −0.0160631
\(574\) 71.1845i 0.124015i
\(575\) −160.038 −0.278327
\(576\) 151.076 0.262284
\(577\) 46.2464 0.0801498 0.0400749 0.999197i \(-0.487240\pi\)
0.0400749 + 0.999197i \(0.487240\pi\)
\(578\) 556.623i 0.963016i
\(579\) 433.380i 0.748498i
\(580\) 203.601i 0.351036i
\(581\) −704.302 −1.21222
\(582\) 2.40366i 0.00412999i
\(583\) 24.3194 45.0897i 0.0417143 0.0773408i
\(584\) −476.139 −0.815307
\(585\) 569.824i 0.974058i
\(586\) −495.923 −0.846286
\(587\) −966.024 −1.64570 −0.822848 0.568261i \(-0.807616\pi\)
−0.822848 + 0.568261i \(0.807616\pi\)
\(588\) 35.5390 0.0604405
\(589\) 34.6699i 0.0588623i
\(590\) 467.928i 0.793098i
\(591\) 103.586i 0.175273i
\(592\) 208.863 0.352809
\(593\) 883.864i 1.49050i −0.666788 0.745248i \(-0.732331\pi\)
0.666788 0.745248i \(-0.267669\pi\)
\(594\) 263.666 + 142.210i 0.443883 + 0.239411i
\(595\) 1385.95 2.32933
\(596\) 598.376i 1.00399i
\(597\) −411.825 −0.689825
\(598\) −61.3603 −0.102609
\(599\) 857.927 1.43227 0.716133 0.697964i \(-0.245910\pi\)
0.716133 + 0.697964i \(0.245910\pi\)
\(600\) 402.630i 0.671050i
\(601\) 733.292i 1.22012i −0.792355 0.610060i \(-0.791145\pi\)
0.792355 0.610060i \(-0.208855\pi\)
\(602\) 375.375i 0.623547i
\(603\) 27.4957 0.0455982
\(604\) 263.304i 0.435934i
\(605\) −507.797 772.490i −0.839334 1.27684i
\(606\) 1.81070 0.00298795
\(607\) 233.363i 0.384453i 0.981351 + 0.192226i \(0.0615708\pi\)
−0.981351 + 0.192226i \(0.938429\pi\)
\(608\) −24.5220 −0.0403322
\(609\) 98.8887 0.162379
\(610\) 115.917 0.190028
\(611\) 119.053i 0.194849i
\(612\) 505.090i 0.825311i
\(613\) 650.289i 1.06083i 0.847738 + 0.530415i \(0.177964\pi\)
−0.847738 + 0.530415i \(0.822036\pi\)
\(614\) −175.327 −0.285548
\(615\) 125.933i 0.204769i
\(616\) 249.165 461.967i 0.404489 0.749947i
\(617\) −1142.33 −1.85142 −0.925711 0.378233i \(-0.876532\pi\)
−0.925711 + 0.378233i \(0.876532\pi\)
\(618\) 243.483i 0.393985i
\(619\) 638.219 1.03105 0.515524 0.856875i \(-0.327597\pi\)
0.515524 + 0.856875i \(0.327597\pi\)
\(620\) −1004.83 −1.62069
\(621\) 119.605 0.192601
\(622\) 165.757i 0.266490i
\(623\) 601.411i 0.965347i
\(624\) 59.1875i 0.0948517i
\(625\) −345.684 −0.553095
\(626\) 566.044i 0.904224i
\(627\) −11.6295 6.27244i −0.0185478 0.0100039i
\(628\) −725.352 −1.15502
\(629\) 1896.56i 3.01520i
\(630\) 340.891 0.541098
\(631\) 662.231 1.04950 0.524748 0.851258i \(-0.324160\pi\)
0.524748 + 0.851258i \(0.324160\pi\)
\(632\) 231.666 0.366560
\(633\) 121.904i 0.192581i
\(634\) 175.364i 0.276599i
\(635\) 1796.10i 2.82850i
\(636\) −21.2223 −0.0333683
\(637\) 91.3790i 0.143452i
\(638\) −54.1257 + 100.352i −0.0848365 + 0.157292i
\(639\) −40.1533 −0.0628377
\(640\) 814.581i 1.27278i
\(641\) −373.060 −0.581996 −0.290998 0.956724i \(-0.593987\pi\)
−0.290998 + 0.956724i \(0.593987\pi\)
\(642\) −261.136 −0.406754
\(643\) −745.562 −1.15951 −0.579753 0.814792i \(-0.696851\pi\)
−0.579753 + 0.814792i \(0.696851\pi\)
\(644\) 86.4256i 0.134201i
\(645\) 664.079i 1.02958i
\(646\) 22.8403i 0.0353566i
\(647\) −405.581 −0.626864 −0.313432 0.949611i \(-0.601479\pi\)
−0.313432 + 0.949611i \(0.601479\pi\)
\(648\) 124.984i 0.192877i
\(649\) −292.875 + 543.007i −0.451271 + 0.836683i
\(650\) 426.955 0.656854
\(651\) 488.045i 0.749685i
\(652\) 258.965 0.397185
\(653\) 1017.79 1.55864 0.779318 0.626628i \(-0.215566\pi\)
0.779318 + 0.626628i \(0.215566\pi\)
\(654\) 363.064 0.555143
\(655\) 45.1514i 0.0689335i
\(656\) 31.6085i 0.0481837i
\(657\) 407.724i 0.620584i
\(658\) −71.2221 −0.108240
\(659\) 836.253i 1.26897i −0.772934 0.634486i \(-0.781212\pi\)
0.772934 0.634486i \(-0.218788\pi\)
\(660\) −181.793 + 337.055i −0.275444 + 0.510689i
\(661\) 414.058 0.626411 0.313205 0.949685i \(-0.398597\pi\)
0.313205 + 0.949685i \(0.398597\pi\)
\(662\) 185.765i 0.280612i
\(663\) −537.446 −0.810628
\(664\) −815.678 −1.22843
\(665\) −36.2935 −0.0545767
\(666\) 466.481i 0.700422i
\(667\) 45.5222i 0.0682491i
\(668\) 364.147i 0.545131i
\(669\) −269.061 −0.402184
\(670\) 36.0362i 0.0537854i
\(671\) 134.516 + 72.5522i 0.200471 + 0.108125i
\(672\) −345.193 −0.513681
\(673\) 119.258i 0.177204i −0.996067 0.0886020i \(-0.971760\pi\)
0.996067 0.0886020i \(-0.0282399\pi\)
\(674\) 480.052 0.712243
\(675\) −832.233 −1.23294
\(676\) 89.0601 0.131746
\(677\) 187.148i 0.276437i 0.990402 + 0.138218i \(0.0441376\pi\)
−0.990402 + 0.138218i \(0.955862\pi\)
\(678\) 212.823i 0.313899i
\(679\) 8.70499i 0.0128203i
\(680\) 1605.12 2.36047
\(681\) 544.903i 0.800151i
\(682\) 495.268 + 267.126i 0.726199 + 0.391681i
\(683\) 323.044 0.472977 0.236489 0.971634i \(-0.424003\pi\)
0.236489 + 0.971634i \(0.424003\pi\)
\(684\) 13.2267i 0.0193372i
\(685\) −387.360 −0.565489
\(686\) −398.123 −0.580355
\(687\) 469.978 0.684102
\(688\) 166.680i 0.242268i
\(689\) 54.5673i 0.0791978i
\(690\) 64.9407i 0.0941170i
\(691\) −981.418 −1.42029 −0.710143 0.704057i \(-0.751370\pi\)
−0.710143 + 0.704057i \(0.751370\pi\)
\(692\) 762.795i 1.10230i
\(693\) 395.588 + 213.363i 0.570834 + 0.307883i
\(694\) −301.512 −0.434455
\(695\) 376.019i 0.541034i
\(696\) 114.527 0.164550
\(697\) −287.018 −0.411790
\(698\) −501.127 −0.717947
\(699\) 196.702i 0.281405i
\(700\) 601.364i 0.859091i
\(701\) 122.016i 0.174059i −0.996206 0.0870296i \(-0.972263\pi\)
0.996206 0.0870296i \(-0.0277375\pi\)
\(702\) −319.088 −0.454541
\(703\) 49.6646i 0.0706467i
\(704\) 123.929 229.771i 0.176035 0.326379i
\(705\) 126.000 0.178723
\(706\) 63.0706i 0.0893351i
\(707\) 6.55755 0.00927517
\(708\) 255.576 0.360983
\(709\) 998.822 1.40878 0.704388 0.709815i \(-0.251222\pi\)
0.704388 + 0.709815i \(0.251222\pi\)
\(710\) 52.6253i 0.0741202i
\(711\) 198.378i 0.279013i
\(712\) 696.516i 0.978252i
\(713\) 224.665 0.315099
\(714\) 321.522i 0.450310i
\(715\) 866.646 + 467.432i 1.21209 + 0.653750i
\(716\) 441.185 0.616179
\(717\) 582.878i 0.812940i
\(718\) 746.253 1.03935
\(719\) −505.751 −0.703409 −0.351704 0.936111i \(-0.614398\pi\)
−0.351704 + 0.936111i \(0.614398\pi\)
\(720\) −151.368 −0.210234
\(721\) 881.789i 1.22301i
\(722\) 393.614i 0.545172i
\(723\) 404.328i 0.559237i
\(724\) 365.949 0.505455
\(725\) 316.751i 0.436898i
\(726\) 179.207 117.802i 0.246841 0.162262i
\(727\) 817.446 1.12441 0.562205 0.826998i \(-0.309953\pi\)
0.562205 + 0.826998i \(0.309953\pi\)
\(728\) 559.071i 0.767954i
\(729\) 257.278 0.352919
\(730\) −534.367 −0.732010
\(731\) −1513.52 −2.07048
\(732\) 63.3124i 0.0864923i
\(733\) 836.566i 1.14129i −0.821197 0.570645i \(-0.806693\pi\)
0.821197 0.570645i \(-0.193307\pi\)
\(734\) 577.768i 0.787149i
\(735\) 96.7110 0.131580
\(736\) 158.905i 0.215904i
\(737\) 22.5550 41.8183i 0.0306038 0.0567412i
\(738\) −70.5954 −0.0956577
\(739\) 1258.25i 1.70264i 0.524644 + 0.851322i \(0.324198\pi\)
−0.524644 + 0.851322i \(0.675802\pi\)
\(740\) 1439.42 1.94516
\(741\) 14.0739 0.0189932
\(742\) 32.6443 0.0439951
\(743\) 81.6684i 0.109917i −0.998489 0.0549585i \(-0.982497\pi\)
0.998489 0.0549585i \(-0.0175027\pi\)
\(744\) 565.222i 0.759708i
\(745\) 1628.34i 2.18569i
\(746\) 459.412 0.615834
\(747\) 698.474i 0.935039i
\(748\) 768.192 + 414.330i 1.02700 + 0.553917i
\(749\) −945.719 −1.26264
\(750\) 113.342i 0.151122i
\(751\) 119.746 0.159449 0.0797244 0.996817i \(-0.474596\pi\)
0.0797244 + 0.996817i \(0.474596\pi\)
\(752\) 31.6252 0.0420548
\(753\) −279.528 −0.371219
\(754\) 121.446i 0.161069i
\(755\) 716.519i 0.949032i
\(756\) 449.433i 0.594488i
\(757\) 97.0977 0.128266 0.0641332 0.997941i \(-0.479572\pi\)
0.0641332 + 0.997941i \(0.479572\pi\)
\(758\) 205.649i 0.271305i
\(759\) 40.6462 75.3605i 0.0535523 0.0992892i
\(760\) −42.0328 −0.0553064
\(761\) 360.307i 0.473465i −0.971575 0.236732i \(-0.923924\pi\)
0.971575 0.236732i \(-0.0760764\pi\)
\(762\) 416.669 0.546810
\(763\) 1314.86 1.72327
\(764\) −15.9211 −0.0208392
\(765\) 1374.48i 1.79671i
\(766\) 273.486i 0.357032i
\(767\) 657.145i 0.856773i
\(768\) −343.051 −0.446681
\(769\) 1105.53i 1.43762i 0.695205 + 0.718812i \(0.255314\pi\)
−0.695205 + 0.718812i \(0.744686\pi\)
\(770\) 279.636 518.462i 0.363164 0.673328i
\(771\) 435.054 0.564273
\(772\) 749.652i 0.971052i
\(773\) −327.176 −0.423255 −0.211628 0.977350i \(-0.567876\pi\)
−0.211628 + 0.977350i \(0.567876\pi\)
\(774\) −372.269 −0.480968
\(775\) −1563.26 −2.01711
\(776\) 10.0816i 0.0129917i
\(777\) 699.124i 0.899774i
\(778\) 675.531i 0.868292i
\(779\) 7.51605 0.00964833
\(780\) 407.902i 0.522952i
\(781\) −32.9381 + 61.0691i −0.0421742 + 0.0781935i
\(782\) −148.008 −0.189269
\(783\) 236.726i 0.302332i
\(784\) 24.2739 0.0309616
\(785\) −1973.87 −2.51449
\(786\) 10.4745 0.0133263
\(787\) 255.482i 0.324627i 0.986739 + 0.162314i \(0.0518956\pi\)
−0.986739 + 0.162314i \(0.948104\pi\)
\(788\) 179.182i 0.227388i
\(789\) 347.031i 0.439837i
\(790\) 259.997 0.329110
\(791\) 770.753i 0.974403i
\(792\) 458.145 + 247.103i 0.578465 + 0.311999i
\(793\) −162.791 −0.205285
\(794\) 730.926i 0.920561i
\(795\) −57.7513 −0.0726432
\(796\) −712.367 −0.894933
\(797\) 945.887 1.18681 0.593404 0.804904i \(-0.297783\pi\)
0.593404 + 0.804904i \(0.297783\pi\)
\(798\) 8.41959i 0.0105509i
\(799\) 287.169i 0.359411i
\(800\) 1105.69i 1.38211i
\(801\) 596.434 0.744612
\(802\) 129.914i 0.161988i
\(803\) −620.107 334.459i −0.772238 0.416512i
\(804\) −19.6825 −0.0244807
\(805\) 235.187i 0.292157i
\(806\) −599.371 −0.743636
\(807\) −379.457 −0.470206
\(808\) 7.59453 0.00939917
\(809\) 895.925i 1.10745i 0.832700 + 0.553724i \(0.186794\pi\)
−0.832700 + 0.553724i \(0.813206\pi\)
\(810\) 140.269i 0.173171i
\(811\) 954.586i 1.17705i −0.808479 0.588524i \(-0.799709\pi\)
0.808479 0.588524i \(-0.200291\pi\)
\(812\) 171.056 0.210660
\(813\) 276.626i 0.340253i
\(814\) −709.471 382.658i −0.871586 0.470096i
\(815\) 704.711 0.864676
\(816\) 142.767i 0.174960i
\(817\) 39.6342 0.0485119
\(818\) −144.788 −0.177002
\(819\) −478.739 −0.584541
\(820\) 217.836i 0.265654i
\(821\) 632.016i 0.769812i −0.922956 0.384906i \(-0.874234\pi\)
0.922956 0.384906i \(-0.125766\pi\)
\(822\) 89.8622i 0.109321i
\(823\) −361.628 −0.439402 −0.219701 0.975567i \(-0.570508\pi\)
−0.219701 + 0.975567i \(0.570508\pi\)
\(824\) 1021.23i 1.23936i
\(825\) −282.823 + 524.371i −0.342816 + 0.635602i
\(826\) −393.130 −0.475945
\(827\) 1292.02i 1.56229i −0.624349 0.781146i \(-0.714636\pi\)
0.624349 0.781146i \(-0.285364\pi\)
\(828\) 85.7104 0.103515
\(829\) 678.938 0.818984 0.409492 0.912314i \(-0.365706\pi\)
0.409492 + 0.912314i \(0.365706\pi\)
\(830\) −915.428 −1.10293
\(831\) 473.722i 0.570063i
\(832\) 278.068i 0.334216i
\(833\) 220.417i 0.264606i
\(834\) −87.2310 −0.104594
\(835\) 990.940i 1.18675i
\(836\) −20.1164 10.8499i −0.0240627 0.0129784i
\(837\) 1168.31 1.39583
\(838\) 147.125i 0.175567i
\(839\) −888.769 −1.05932 −0.529660 0.848210i \(-0.677680\pi\)
−0.529660 + 0.848210i \(0.677680\pi\)
\(840\) −591.693 −0.704396
\(841\) 750.901 0.892867
\(842\) 155.726i 0.184948i
\(843\) 287.486i 0.341027i
\(844\) 210.866i 0.249842i
\(845\) 242.356 0.286812
\(846\) 70.6328i 0.0834903i
\(847\) 649.008 426.627i 0.766244 0.503691i
\(848\) −14.4953 −0.0170935
\(849\) 226.039i 0.266241i
\(850\) 1029.87 1.21161
\(851\) −321.833 −0.378182
\(852\) 28.7433 0.0337362
\(853\) 403.297i 0.472799i 0.971656 + 0.236399i \(0.0759674\pi\)
−0.971656 + 0.236399i \(0.924033\pi\)
\(854\) 97.3879i 0.114037i
\(855\) 35.9932i 0.0420973i
\(856\) −1095.27 −1.27952
\(857\) 193.500i 0.225788i −0.993607 0.112894i \(-0.963988\pi\)
0.993607 0.112894i \(-0.0360120\pi\)
\(858\) −108.438 + 201.050i −0.126384 + 0.234324i
\(859\) 163.433 0.190260 0.0951300 0.995465i \(-0.469673\pi\)
0.0951300 + 0.995465i \(0.469673\pi\)
\(860\) 1148.71i 1.33571i
\(861\) 105.803 0.122884
\(862\) 725.697 0.841876
\(863\) 755.373 0.875288 0.437644 0.899148i \(-0.355813\pi\)
0.437644 + 0.899148i \(0.355813\pi\)
\(864\) 826.344i 0.956417i
\(865\) 2075.77i 2.39973i
\(866\) 274.579i 0.317066i
\(867\) −827.319 −0.954232
\(868\) 844.210i 0.972592i
\(869\) 301.714 + 162.731i 0.347196 + 0.187263i
\(870\) 128.532 0.147738
\(871\) 50.6083i 0.0581037i
\(872\) 1522.78 1.74631
\(873\) −8.63295 −0.00988883
\(874\) 3.87585 0.00443461
\(875\) 410.473i 0.469112i
\(876\) 291.864i 0.333179i
\(877\) 818.563i 0.933367i 0.884424 + 0.466684i \(0.154551\pi\)
−0.884424 + 0.466684i \(0.845449\pi\)
\(878\) −542.031 −0.617348
\(879\) 737.100i 0.838566i
\(880\) −124.169 + 230.216i −0.141101 + 0.261609i
\(881\) −541.369 −0.614493 −0.307247 0.951630i \(-0.599408\pi\)
−0.307247 + 0.951630i \(0.599408\pi\)
\(882\) 54.2142i 0.0614673i
\(883\) 1147.58 1.29963 0.649817 0.760091i \(-0.274845\pi\)
0.649817 + 0.760091i \(0.274845\pi\)
\(884\) −929.663 −1.05165
\(885\) 695.489 0.785864
\(886\) 803.605i 0.907004i
\(887\) 1718.65i 1.93760i 0.247843 + 0.968800i \(0.420278\pi\)
−0.247843 + 0.968800i \(0.579722\pi\)
\(888\) 809.681i 0.911803i
\(889\) 1508.99 1.69740
\(890\) 781.694i 0.878308i
\(891\) −87.7939 + 162.775i −0.0985341 + 0.182688i
\(892\) −465.416 −0.521767
\(893\) 7.52002i 0.00842108i
\(894\) −377.752 −0.422541
\(895\) 1200.58 1.34143
\(896\) −684.371 −0.763807
\(897\) 91.2009i 0.101673i
\(898\) 809.509i 0.901457i
\(899\) 444.663i 0.494620i
\(900\) −596.388 −0.662653
\(901\) 131.623i 0.146085i
\(902\) −57.9100 + 107.369i −0.0642018 + 0.119034i
\(903\) 557.927 0.617860
\(904\) 892.636i 0.987430i
\(905\) 995.844 1.10038
\(906\) 166.222 0.183468
\(907\) −1632.71 −1.80012 −0.900062 0.435762i \(-0.856479\pi\)
−0.900062 + 0.435762i \(0.856479\pi\)
\(908\) 942.561i 1.03806i
\(909\) 6.50328i 0.00715433i
\(910\) 627.440i 0.689495i
\(911\) −1125.41 −1.23536 −0.617679 0.786430i \(-0.711927\pi\)
−0.617679 + 0.786430i \(0.711927\pi\)
\(912\) 3.73860i 0.00409935i
\(913\) −1062.31 572.964i −1.16354 0.627562i
\(914\) −628.841 −0.688010
\(915\) 172.290i 0.188295i
\(916\) 812.959 0.887509
\(917\) 37.9340 0.0413676
\(918\) −769.677 −0.838428
\(919\) 493.122i 0.536586i −0.963337 0.268293i \(-0.913541\pi\)
0.963337 0.268293i \(-0.0864595\pi\)
\(920\) 272.378i 0.296063i
\(921\) 260.591i 0.282944i
\(922\) −380.435 −0.412620
\(923\) 73.9056i 0.0800711i
\(924\) −283.177 152.734i −0.306469 0.165296i
\(925\) 2239.37 2.42094
\(926\) 68.4851i 0.0739580i
\(927\) 874.492 0.943357
\(928\) 314.509 0.338911
\(929\) −378.116 −0.407014 −0.203507 0.979074i \(-0.565234\pi\)
−0.203507 + 0.979074i \(0.565234\pi\)
\(930\) 634.344i 0.682091i
\(931\) 5.77199i 0.00619978i
\(932\) 340.252i 0.365077i
\(933\) −246.367 −0.264059
\(934\) 788.673i 0.844404i
\(935\) 2090.45 + 1127.50i 2.23578 + 1.20588i
\(936\) −554.444 −0.592355
\(937\) 375.108i 0.400329i 0.979762 + 0.200164i \(0.0641477\pi\)
−0.979762 + 0.200164i \(0.935852\pi\)
\(938\) 30.2759 0.0322771
\(939\) −841.321 −0.895976
\(940\) 217.951 0.231863
\(941\) 1149.02i 1.22106i 0.791993 + 0.610530i \(0.209044\pi\)
−0.791993 + 0.610530i \(0.790956\pi\)
\(942\) 457.911i 0.486105i
\(943\) 48.7049i 0.0516489i
\(944\) 174.564 0.184920
\(945\) 1223.02i 1.29421i
\(946\) −305.375 + 566.184i −0.322807 + 0.598504i
\(947\) −780.204 −0.823869 −0.411934 0.911213i \(-0.635147\pi\)
−0.411934 + 0.911213i \(0.635147\pi\)
\(948\) 142.007i 0.149796i
\(949\) 750.451 0.790781
\(950\) −26.9688 −0.0283882
\(951\) −260.646 −0.274076
\(952\) 1348.54i 1.41654i
\(953\) 1645.77i 1.72694i 0.504404 + 0.863468i \(0.331712\pi\)
−0.504404 + 0.863468i \(0.668288\pi\)
\(954\) 32.3742i 0.0339352i
\(955\) −43.3256 −0.0453671
\(956\) 1008.25i 1.05465i
\(957\) 149.155 + 80.4480i 0.155857 + 0.0840627i
\(958\) −690.670 −0.720950
\(959\) 325.441i 0.339355i
\(960\) −294.293 −0.306555
\(961\) 1233.54 1.28360
\(962\) 858.599 0.892514
\(963\) 937.893i 0.973929i
\(964\) 699.399i 0.725517i
\(965\) 2040.00i 2.11399i
\(966\) 54.5600 0.0564804
\(967\) 1583.76i 1.63781i −0.573928 0.818906i \(-0.694581\pi\)
0.573928 0.818906i \(-0.305419\pi\)
\(968\) 751.640 494.092i 0.776487 0.510425i
\(969\) 33.9480 0.0350341
\(970\) 11.3144i 0.0116644i
\(971\) −225.914 −0.232662 −0.116331 0.993211i \(-0.537113\pi\)
−0.116331 + 0.993211i \(0.537113\pi\)
\(972\) 706.778 0.727137
\(973\) −315.913 −0.324679
\(974\) 640.949i 0.658059i
\(975\) 634.592i 0.650863i
\(976\) 43.2438i 0.0443071i
\(977\) −1755.73 −1.79707 −0.898533 0.438905i \(-0.855366\pi\)
−0.898533 + 0.438905i \(0.855366\pi\)
\(978\) 163.483i 0.167161i
\(979\) 489.260 907.118i 0.499755 0.926576i
\(980\) 167.289 0.170703
\(981\) 1303.98i 1.32923i
\(982\) 727.588 0.740925
\(983\) 1512.85 1.53902 0.769508 0.638638i \(-0.220502\pi\)
0.769508 + 0.638638i \(0.220502\pi\)
\(984\) 122.534 0.124526
\(985\) 487.600i 0.495025i
\(986\) 292.942i 0.297101i
\(987\) 105.859i 0.107253i
\(988\) 24.3448 0.0246405
\(989\) 256.835i 0.259691i
\(990\) 514.172 + 277.322i 0.519366 + 0.280123i
\(991\) 31.4683 0.0317541 0.0158771 0.999874i \(-0.494946\pi\)
0.0158771 + 0.999874i \(0.494946\pi\)
\(992\) 1552.20i 1.56471i
\(993\) 276.106 0.278052
\(994\) −44.2133 −0.0444801
\(995\) −1938.54 −1.94828
\(996\) 499.995i 0.502003i
\(997\) 1336.93i 1.34096i 0.741929 + 0.670478i \(0.233911\pi\)
−0.741929 + 0.670478i \(0.766089\pi\)
\(998\) 159.620i 0.159940i
\(999\) −1673.60 −1.67528
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 253.3.c.a.208.27 yes 44
11.10 odd 2 inner 253.3.c.a.208.18 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.3.c.a.208.18 44 11.10 odd 2 inner
253.3.c.a.208.27 yes 44 1.1 even 1 trivial