L(s) = 1 | + (0.974 − 0.222i)3-s + (0.222 − 0.974i)4-s + (0.360 + 1.57i)7-s + (0.900 − 0.433i)9-s − i·12-s + (0.556 + 0.268i)13-s + (−0.900 − 0.433i)16-s + (−0.602 − 0.137i)19-s + (0.702 + 1.45i)21-s + (−0.222 + 0.974i)25-s + (0.781 − 0.623i)27-s + 1.61·28-s + (1.26 − 1.00i)31-s + (−0.222 − 0.974i)36-s + (0.268 + 0.556i)37-s + ⋯ |
L(s) = 1 | + (0.974 − 0.222i)3-s + (0.222 − 0.974i)4-s + (0.360 + 1.57i)7-s + (0.900 − 0.433i)9-s − i·12-s + (0.556 + 0.268i)13-s + (−0.900 − 0.433i)16-s + (−0.602 − 0.137i)19-s + (0.702 + 1.45i)21-s + (−0.222 + 0.974i)25-s + (0.781 − 0.623i)27-s + 1.61·28-s + (1.26 − 1.00i)31-s + (−0.222 − 0.974i)36-s + (0.268 + 0.556i)37-s + ⋯ |
Λ(s)=(=(2523s/2ΓC(s)L(s)(0.944+0.328i)Λ(1−s)
Λ(s)=(=(2523s/2ΓC(s)L(s)(0.944+0.328i)Λ(1−s)
Degree: |
2 |
Conductor: |
2523
= 3⋅292
|
Sign: |
0.944+0.328i
|
Analytic conductor: |
1.25914 |
Root analytic conductor: |
1.12211 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2523(1745,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2523, ( :0), 0.944+0.328i)
|
Particular Values
L(21) |
≈ |
1.896154059 |
L(21) |
≈ |
1.896154059 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.974+0.222i)T |
| 29 | 1 |
good | 2 | 1+(−0.222+0.974i)T2 |
| 5 | 1+(0.222−0.974i)T2 |
| 7 | 1+(−0.360−1.57i)T+(−0.900+0.433i)T2 |
| 11 | 1+(0.623+0.781i)T2 |
| 13 | 1+(−0.556−0.268i)T+(0.623+0.781i)T2 |
| 17 | 1+T2 |
| 19 | 1+(0.602+0.137i)T+(0.900+0.433i)T2 |
| 23 | 1+(0.222+0.974i)T2 |
| 31 | 1+(−1.26+1.00i)T+(0.222−0.974i)T2 |
| 37 | 1+(−0.268−0.556i)T+(−0.623+0.781i)T2 |
| 41 | 1+T2 |
| 43 | 1+(1.26+1.00i)T+(0.222+0.974i)T2 |
| 47 | 1+(0.623+0.781i)T2 |
| 53 | 1+(0.222−0.974i)T2 |
| 59 | 1−T2 |
| 61 | 1+(1.57−0.360i)T+(0.900−0.433i)T2 |
| 67 | 1+(−0.556+0.268i)T+(0.623−0.781i)T2 |
| 71 | 1+(−0.623−0.781i)T2 |
| 73 | 1+(0.483+0.385i)T+(0.222+0.974i)T2 |
| 79 | 1+(0.268+0.556i)T+(−0.623+0.781i)T2 |
| 83 | 1+(0.900+0.433i)T2 |
| 89 | 1+(−0.222+0.974i)T2 |
| 97 | 1+(1.57+0.360i)T+(0.900+0.433i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.967809235738652347650844027306, −8.509888437963541001381321158505, −7.66008780337340291038025996551, −6.60559721929723431610654057069, −6.06015284112235875742437785966, −5.19852358257470810404085787702, −4.32350570855367022798887020052, −3.05797101259380730783350651763, −2.21774117122829491258543916756, −1.51110283172942226236013210585,
1.42468404928078472860675137237, 2.66441359374599962459064455548, 3.50850938555838022659232622511, 4.18373609576692480589597194710, 4.74494793862872465053402045432, 6.41969587254055375828543162784, 7.00329417472932272377337253556, 7.901070832844520024600377113920, 8.139610309910418440356872090193, 8.905303543064560405346623516744