L(s) = 1 | + (0.974 − 0.222i)3-s + (0.222 − 0.974i)4-s + (0.360 + 1.57i)7-s + (0.900 − 0.433i)9-s − i·12-s + (0.556 + 0.268i)13-s + (−0.900 − 0.433i)16-s + (−0.602 − 0.137i)19-s + (0.702 + 1.45i)21-s + (−0.222 + 0.974i)25-s + (0.781 − 0.623i)27-s + 1.61·28-s + (1.26 − 1.00i)31-s + (−0.222 − 0.974i)36-s + (0.268 + 0.556i)37-s + ⋯ |
L(s) = 1 | + (0.974 − 0.222i)3-s + (0.222 − 0.974i)4-s + (0.360 + 1.57i)7-s + (0.900 − 0.433i)9-s − i·12-s + (0.556 + 0.268i)13-s + (−0.900 − 0.433i)16-s + (−0.602 − 0.137i)19-s + (0.702 + 1.45i)21-s + (−0.222 + 0.974i)25-s + (0.781 − 0.623i)27-s + 1.61·28-s + (1.26 − 1.00i)31-s + (−0.222 − 0.974i)36-s + (0.268 + 0.556i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.944 + 0.328i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.944 + 0.328i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.896154059\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.896154059\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.974 + 0.222i)T \) |
| 29 | \( 1 \) |
good | 2 | \( 1 + (-0.222 + 0.974i)T^{2} \) |
| 5 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 7 | \( 1 + (-0.360 - 1.57i)T + (-0.900 + 0.433i)T^{2} \) |
| 11 | \( 1 + (0.623 + 0.781i)T^{2} \) |
| 13 | \( 1 + (-0.556 - 0.268i)T + (0.623 + 0.781i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + (0.602 + 0.137i)T + (0.900 + 0.433i)T^{2} \) |
| 23 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 31 | \( 1 + (-1.26 + 1.00i)T + (0.222 - 0.974i)T^{2} \) |
| 37 | \( 1 + (-0.268 - 0.556i)T + (-0.623 + 0.781i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (1.26 + 1.00i)T + (0.222 + 0.974i)T^{2} \) |
| 47 | \( 1 + (0.623 + 0.781i)T^{2} \) |
| 53 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + (1.57 - 0.360i)T + (0.900 - 0.433i)T^{2} \) |
| 67 | \( 1 + (-0.556 + 0.268i)T + (0.623 - 0.781i)T^{2} \) |
| 71 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 73 | \( 1 + (0.483 + 0.385i)T + (0.222 + 0.974i)T^{2} \) |
| 79 | \( 1 + (0.268 + 0.556i)T + (-0.623 + 0.781i)T^{2} \) |
| 83 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 89 | \( 1 + (-0.222 + 0.974i)T^{2} \) |
| 97 | \( 1 + (1.57 + 0.360i)T + (0.900 + 0.433i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.967809235738652347650844027306, −8.509888437963541001381321158505, −7.66008780337340291038025996551, −6.60559721929723431610654057069, −6.06015284112235875742437785966, −5.19852358257470810404085787702, −4.32350570855367022798887020052, −3.05797101259380730783350651763, −2.21774117122829491258543916756, −1.51110283172942226236013210585,
1.42468404928078472860675137237, 2.66441359374599962459064455548, 3.50850938555838022659232622511, 4.18373609576692480589597194710, 4.74494793862872465053402045432, 6.41969587254055375828543162784, 7.00329417472932272377337253556, 7.901070832844520024600377113920, 8.139610309910418440356872090193, 8.905303543064560405346623516744