Properties

Label 2523.1745
Modulus $2523$
Conductor $87$
Order $14$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2523, base_ring=CyclotomicField(14))
 
M = H._module
 
chi = DirichletCharacter(H, M([7,11]))
 
pari: [g,chi] = znchar(Mod(1745,2523))
 

Basic properties

Modulus: \(2523\)
Conductor: \(87\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(14\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{87}(5,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2523.h

\(\chi_{2523}(236,\cdot)\) \(\chi_{2523}(1037,\cdot)\) \(\chi_{2523}(1745,\cdot)\) \(\chi_{2523}(1949,\cdot)\) \(\chi_{2523}(1952,\cdot)\) \(\chi_{2523}(2333,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: 14.0.22439994995240462987343.1

Values on generators

\((842,1684)\) → \((-1,e\left(\frac{11}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 2523 }(1745, a) \) \(-1\)\(1\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{1}{7}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2523 }(1745,a) \;\) at \(\;a = \) e.g. 2