L(s) = 1 | + (0.623 − 0.781i)2-s + (0.222 − 0.974i)3-s + (−0.623 − 0.781i)6-s + (0.222 − 0.974i)7-s + (0.900 + 0.433i)8-s + (−0.900 − 0.433i)9-s + (−0.900 + 0.433i)11-s + (0.900 − 0.433i)13-s + (−0.623 − 0.781i)14-s + (0.900 − 0.433i)16-s + 17-s + (−0.900 + 0.433i)18-s + (−0.900 − 0.433i)21-s + (−0.222 + 0.974i)22-s + (0.623 − 0.781i)24-s + (−0.222 − 0.974i)25-s + ⋯ |
L(s) = 1 | + (0.623 − 0.781i)2-s + (0.222 − 0.974i)3-s + (−0.623 − 0.781i)6-s + (0.222 − 0.974i)7-s + (0.900 + 0.433i)8-s + (−0.900 − 0.433i)9-s + (−0.900 + 0.433i)11-s + (0.900 − 0.433i)13-s + (−0.623 − 0.781i)14-s + (0.900 − 0.433i)16-s + 17-s + (−0.900 + 0.433i)18-s + (−0.900 − 0.433i)21-s + (−0.222 + 0.974i)22-s + (0.623 − 0.781i)24-s + (−0.222 − 0.974i)25-s + ⋯ |
Λ(s)=(=(2523s/2ΓC(s)L(s)(−0.510+0.859i)Λ(1−s)
Λ(s)=(=(2523s/2ΓC(s)L(s)(−0.510+0.859i)Λ(1−s)
Degree: |
2 |
Conductor: |
2523
= 3⋅292
|
Sign: |
−0.510+0.859i
|
Analytic conductor: |
1.25914 |
Root analytic conductor: |
1.12211 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2523(1949,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2523, ( :0), −0.510+0.859i)
|
Particular Values
L(21) |
≈ |
1.922582196 |
L(21) |
≈ |
1.922582196 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.222+0.974i)T |
| 29 | 1 |
good | 2 | 1+(−0.623+0.781i)T+(−0.222−0.974i)T2 |
| 5 | 1+(0.222+0.974i)T2 |
| 7 | 1+(−0.222+0.974i)T+(−0.900−0.433i)T2 |
| 11 | 1+(0.900−0.433i)T+(0.623−0.781i)T2 |
| 13 | 1+(−0.900+0.433i)T+(0.623−0.781i)T2 |
| 17 | 1−T+T2 |
| 19 | 1+(0.900−0.433i)T2 |
| 23 | 1+(0.222−0.974i)T2 |
| 31 | 1+(0.222+0.974i)T2 |
| 37 | 1+(−0.623−0.781i)T2 |
| 41 | 1+2T+T2 |
| 43 | 1+(0.222−0.974i)T2 |
| 47 | 1+(0.900−0.433i)T+(0.623−0.781i)T2 |
| 53 | 1+(0.222+0.974i)T2 |
| 59 | 1−T2 |
| 61 | 1+(0.900+0.433i)T2 |
| 67 | 1+(−0.900−0.433i)T+(0.623+0.781i)T2 |
| 71 | 1+(−0.623+0.781i)T2 |
| 73 | 1+(0.222−0.974i)T2 |
| 79 | 1+(−0.623−0.781i)T2 |
| 83 | 1+(0.900−0.433i)T2 |
| 89 | 1+(−0.623+0.781i)T+(−0.222−0.974i)T2 |
| 97 | 1+(0.900−0.433i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.476916428660894949141321251000, −8.004983950815997236101789991679, −7.45062501746509790970548503566, −6.63921139502084078521776783551, −5.60146544357262729571112952604, −4.76503272919922634093086083256, −3.71849081307201234511565816427, −3.09780613640425390563840335533, −2.09428098455190613825654761652, −1.11613387356117617558569275510,
1.78415266742459309156314613085, 3.10479174910509789356280881722, 3.82716054622805759268503621344, 4.94915848960930964941216748287, 5.40751521242256998651233432627, 5.92236518718995601478334237267, 6.87988696960492054353713204678, 8.001730339250659605469497004542, 8.410449471510493092654716841845, 9.325040114977261236496363492783