L(s) = 1 | + (0.623 + 0.781i)2-s + (0.222 + 0.974i)3-s + (−0.623 + 0.781i)6-s + (0.222 + 0.974i)7-s + (0.900 − 0.433i)8-s + (−0.900 + 0.433i)9-s + (−0.900 − 0.433i)11-s + (0.900 + 0.433i)13-s + (−0.623 + 0.781i)14-s + (0.900 + 0.433i)16-s + 17-s + (−0.900 − 0.433i)18-s + (−0.900 + 0.433i)21-s + (−0.222 − 0.974i)22-s + (0.623 + 0.781i)24-s + (−0.222 + 0.974i)25-s + ⋯ |
L(s) = 1 | + (0.623 + 0.781i)2-s + (0.222 + 0.974i)3-s + (−0.623 + 0.781i)6-s + (0.222 + 0.974i)7-s + (0.900 − 0.433i)8-s + (−0.900 + 0.433i)9-s + (−0.900 − 0.433i)11-s + (0.900 + 0.433i)13-s + (−0.623 + 0.781i)14-s + (0.900 + 0.433i)16-s + 17-s + (−0.900 − 0.433i)18-s + (−0.900 + 0.433i)21-s + (−0.222 − 0.974i)22-s + (0.623 + 0.781i)24-s + (−0.222 + 0.974i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.510 - 0.859i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.510 - 0.859i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.922582196\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.922582196\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.222 - 0.974i)T \) |
| 29 | \( 1 \) |
good | 2 | \( 1 + (-0.623 - 0.781i)T + (-0.222 + 0.974i)T^{2} \) |
| 5 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 7 | \( 1 + (-0.222 - 0.974i)T + (-0.900 + 0.433i)T^{2} \) |
| 11 | \( 1 + (0.900 + 0.433i)T + (0.623 + 0.781i)T^{2} \) |
| 13 | \( 1 + (-0.900 - 0.433i)T + (0.623 + 0.781i)T^{2} \) |
| 17 | \( 1 - T + T^{2} \) |
| 19 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 23 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 31 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 37 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 41 | \( 1 + 2T + T^{2} \) |
| 43 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 47 | \( 1 + (0.900 + 0.433i)T + (0.623 + 0.781i)T^{2} \) |
| 53 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 67 | \( 1 + (-0.900 + 0.433i)T + (0.623 - 0.781i)T^{2} \) |
| 71 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 73 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 79 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 83 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 89 | \( 1 + (-0.623 - 0.781i)T + (-0.222 + 0.974i)T^{2} \) |
| 97 | \( 1 + (0.900 + 0.433i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.325040114977261236496363492783, −8.410449471510493092654716841845, −8.001730339250659605469497004542, −6.87988696960492054353713204678, −5.92236518718995601478334237267, −5.40751521242256998651233432627, −4.94915848960930964941216748287, −3.82716054622805759268503621344, −3.10479174910509789356280881722, −1.78415266742459309156314613085,
1.11613387356117617558569275510, 2.09428098455190613825654761652, 3.09780613640425390563840335533, 3.71849081307201234511565816427, 4.76503272919922634093086083256, 5.60146544357262729571112952604, 6.63921139502084078521776783551, 7.45062501746509790970548503566, 8.004983950815997236101789991679, 8.476916428660894949141321251000