Properties

Label 2-252-1.1-c5-0-9
Degree $2$
Conductor $252$
Sign $-1$
Analytic cond. $40.4167$
Root an. cond. $6.35741$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 34·5-s − 49·7-s + 332·11-s − 1.02e3·13-s − 922·17-s + 452·19-s + 3.77e3·23-s − 1.96e3·25-s − 1.16e3·29-s − 9.79e3·31-s − 1.66e3·35-s + 2.39e3·37-s + 7.23e3·41-s + 4.65e3·43-s − 2.46e4·47-s + 2.40e3·49-s − 1.11e3·53-s + 1.12e4·55-s − 4.68e4·59-s − 9.76e3·61-s − 3.48e4·65-s − 2.62e4·67-s − 6.54e4·71-s − 5.60e3·73-s − 1.62e4·77-s − 9.84e3·79-s − 6.11e4·83-s + ⋯
L(s)  = 1  + 0.608·5-s − 0.377·7-s + 0.827·11-s − 1.68·13-s − 0.773·17-s + 0.287·19-s + 1.48·23-s − 0.630·25-s − 0.257·29-s − 1.83·31-s − 0.229·35-s + 0.287·37-s + 0.671·41-s + 0.383·43-s − 1.62·47-s + 1/7·49-s − 0.0542·53-s + 0.503·55-s − 1.75·59-s − 0.335·61-s − 1.02·65-s − 0.714·67-s − 1.54·71-s − 0.123·73-s − 0.312·77-s − 0.177·79-s − 0.973·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(252\)    =    \(2^{2} \cdot 3^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(40.4167\)
Root analytic conductor: \(6.35741\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 252,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + p^{2} T \)
good5 \( 1 - 34 T + p^{5} T^{2} \)
11 \( 1 - 332 T + p^{5} T^{2} \)
13 \( 1 + 1026 T + p^{5} T^{2} \)
17 \( 1 + 922 T + p^{5} T^{2} \)
19 \( 1 - 452 T + p^{5} T^{2} \)
23 \( 1 - 3776 T + p^{5} T^{2} \)
29 \( 1 + 1166 T + p^{5} T^{2} \)
31 \( 1 + 9792 T + p^{5} T^{2} \)
37 \( 1 - 2390 T + p^{5} T^{2} \)
41 \( 1 - 7230 T + p^{5} T^{2} \)
43 \( 1 - 4652 T + p^{5} T^{2} \)
47 \( 1 + 24672 T + p^{5} T^{2} \)
53 \( 1 + 1110 T + p^{5} T^{2} \)
59 \( 1 + 46892 T + p^{5} T^{2} \)
61 \( 1 + 9762 T + p^{5} T^{2} \)
67 \( 1 + 26252 T + p^{5} T^{2} \)
71 \( 1 + 65440 T + p^{5} T^{2} \)
73 \( 1 + 5606 T + p^{5} T^{2} \)
79 \( 1 + 9840 T + p^{5} T^{2} \)
83 \( 1 + 61108 T + p^{5} T^{2} \)
89 \( 1 - 62958 T + p^{5} T^{2} \)
97 \( 1 + 37838 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.67801095880390968041019569664, −9.471608992046821572195457984735, −9.191505614547349917516899781348, −7.55006272164724197498993845134, −6.73298255321240528839049784307, −5.57970983211582409977470066376, −4.46292149411776776270220221384, −2.97761298034663055434348945471, −1.72011968859156978245597450097, 0, 1.72011968859156978245597450097, 2.97761298034663055434348945471, 4.46292149411776776270220221384, 5.57970983211582409977470066376, 6.73298255321240528839049784307, 7.55006272164724197498993845134, 9.191505614547349917516899781348, 9.471608992046821572195457984735, 10.67801095880390968041019569664

Graph of the $Z$-function along the critical line