Properties

Label 2-252-1.1-c5-0-8
Degree $2$
Conductor $252$
Sign $-1$
Analytic cond. $40.4167$
Root an. cond. $6.35741$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·5-s − 49·7-s − 8·11-s + 684·13-s + 2.21e3·17-s − 2.69e3·19-s − 3.34e3·23-s − 2.86e3·25-s + 3.25e3·29-s + 4.78e3·31-s + 784·35-s − 1.14e4·37-s − 1.33e4·41-s − 928·43-s − 1.21e3·47-s + 2.40e3·49-s − 1.31e4·53-s + 128·55-s − 3.47e4·59-s − 1.03e3·61-s − 1.09e4·65-s + 1.01e4·67-s − 6.27e4·71-s − 1.89e4·73-s + 392·77-s + 1.14e4·79-s − 8.89e4·83-s + ⋯
L(s)  = 1  − 0.286·5-s − 0.377·7-s − 0.0199·11-s + 1.12·13-s + 1.86·17-s − 1.71·19-s − 1.31·23-s − 0.918·25-s + 0.718·29-s + 0.894·31-s + 0.108·35-s − 1.37·37-s − 1.24·41-s − 0.0765·43-s − 0.0800·47-s + 1/7·49-s − 0.641·53-s + 0.00570·55-s − 1.29·59-s − 0.0355·61-s − 0.321·65-s + 0.275·67-s − 1.47·71-s − 0.415·73-s + 0.00753·77-s + 0.205·79-s − 1.41·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(252\)    =    \(2^{2} \cdot 3^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(40.4167\)
Root analytic conductor: \(6.35741\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 252,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + p^{2} T \)
good5 \( 1 + 16 T + p^{5} T^{2} \)
11 \( 1 + 8 T + p^{5} T^{2} \)
13 \( 1 - 684 T + p^{5} T^{2} \)
17 \( 1 - 2218 T + p^{5} T^{2} \)
19 \( 1 + 142 p T + p^{5} T^{2} \)
23 \( 1 + 3344 T + p^{5} T^{2} \)
29 \( 1 - 3254 T + p^{5} T^{2} \)
31 \( 1 - 4788 T + p^{5} T^{2} \)
37 \( 1 + 310 p T + p^{5} T^{2} \)
41 \( 1 + 13350 T + p^{5} T^{2} \)
43 \( 1 + 928 T + p^{5} T^{2} \)
47 \( 1 + 1212 T + p^{5} T^{2} \)
53 \( 1 + 13110 T + p^{5} T^{2} \)
59 \( 1 + 34702 T + p^{5} T^{2} \)
61 \( 1 + 1032 T + p^{5} T^{2} \)
67 \( 1 - 10108 T + p^{5} T^{2} \)
71 \( 1 + 62720 T + p^{5} T^{2} \)
73 \( 1 + 18926 T + p^{5} T^{2} \)
79 \( 1 - 11400 T + p^{5} T^{2} \)
83 \( 1 + 88958 T + p^{5} T^{2} \)
89 \( 1 + 19722 T + p^{5} T^{2} \)
97 \( 1 - 17062 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.55459690028161290337774082771, −9.937316717899621250490684495683, −8.575112552914830418078523997200, −7.929367140853306396169152744262, −6.55311814864751536479426054348, −5.73197414798066843777944272257, −4.21717783589933081406849014672, −3.23641400235369632726176733783, −1.58117296822369444835957940989, 0, 1.58117296822369444835957940989, 3.23641400235369632726176733783, 4.21717783589933081406849014672, 5.73197414798066843777944272257, 6.55311814864751536479426054348, 7.929367140853306396169152744262, 8.575112552914830418078523997200, 9.937316717899621250490684495683, 10.55459690028161290337774082771

Graph of the $Z$-function along the critical line