L(s) = 1 | − 16·5-s − 49·7-s − 8·11-s + 684·13-s + 2.21e3·17-s − 2.69e3·19-s − 3.34e3·23-s − 2.86e3·25-s + 3.25e3·29-s + 4.78e3·31-s + 784·35-s − 1.14e4·37-s − 1.33e4·41-s − 928·43-s − 1.21e3·47-s + 2.40e3·49-s − 1.31e4·53-s + 128·55-s − 3.47e4·59-s − 1.03e3·61-s − 1.09e4·65-s + 1.01e4·67-s − 6.27e4·71-s − 1.89e4·73-s + 392·77-s + 1.14e4·79-s − 8.89e4·83-s + ⋯ |
L(s) = 1 | − 0.286·5-s − 0.377·7-s − 0.0199·11-s + 1.12·13-s + 1.86·17-s − 1.71·19-s − 1.31·23-s − 0.918·25-s + 0.718·29-s + 0.894·31-s + 0.108·35-s − 1.37·37-s − 1.24·41-s − 0.0765·43-s − 0.0800·47-s + 1/7·49-s − 0.641·53-s + 0.00570·55-s − 1.29·59-s − 0.0355·61-s − 0.321·65-s + 0.275·67-s − 1.47·71-s − 0.415·73-s + 0.00753·77-s + 0.205·79-s − 1.41·83-s + ⋯ |
Λ(s)=(=(252s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(252s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+p2T |
good | 5 | 1+16T+p5T2 |
| 11 | 1+8T+p5T2 |
| 13 | 1−684T+p5T2 |
| 17 | 1−2218T+p5T2 |
| 19 | 1+142pT+p5T2 |
| 23 | 1+3344T+p5T2 |
| 29 | 1−3254T+p5T2 |
| 31 | 1−4788T+p5T2 |
| 37 | 1+310pT+p5T2 |
| 41 | 1+13350T+p5T2 |
| 43 | 1+928T+p5T2 |
| 47 | 1+1212T+p5T2 |
| 53 | 1+13110T+p5T2 |
| 59 | 1+34702T+p5T2 |
| 61 | 1+1032T+p5T2 |
| 67 | 1−10108T+p5T2 |
| 71 | 1+62720T+p5T2 |
| 73 | 1+18926T+p5T2 |
| 79 | 1−11400T+p5T2 |
| 83 | 1+88958T+p5T2 |
| 89 | 1+19722T+p5T2 |
| 97 | 1−17062T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.55459690028161290337774082771, −9.937316717899621250490684495683, −8.575112552914830418078523997200, −7.929367140853306396169152744262, −6.55311814864751536479426054348, −5.73197414798066843777944272257, −4.21717783589933081406849014672, −3.23641400235369632726176733783, −1.58117296822369444835957940989, 0,
1.58117296822369444835957940989, 3.23641400235369632726176733783, 4.21717783589933081406849014672, 5.73197414798066843777944272257, 6.55311814864751536479426054348, 7.929367140853306396169152744262, 8.575112552914830418078523997200, 9.937316717899621250490684495683, 10.55459690028161290337774082771