L(s) = 1 | + 96·5-s + 49·7-s + 720·11-s + 572·13-s − 1.25e3·17-s − 94·19-s − 96·23-s + 6.09e3·25-s + 4.37e3·29-s − 6.24e3·31-s + 4.70e3·35-s − 1.07e4·37-s − 1.20e4·41-s − 9.16e3·43-s + 2.58e4·47-s + 2.40e3·49-s − 1.01e3·53-s + 6.91e4·55-s − 1.24e3·59-s + 7.59e3·61-s + 5.49e4·65-s + 4.11e4·67-s + 3.76e4·71-s − 1.34e4·73-s + 3.52e4·77-s + 6.24e3·79-s + 2.52e4·83-s + ⋯ |
L(s) = 1 | + 1.71·5-s + 0.377·7-s + 1.79·11-s + 0.938·13-s − 1.05·17-s − 0.0597·19-s − 0.0378·23-s + 1.94·25-s + 0.965·29-s − 1.16·31-s + 0.649·35-s − 1.29·37-s − 1.11·41-s − 0.755·43-s + 1.70·47-s + 1/7·49-s − 0.0495·53-s + 3.08·55-s − 0.0464·59-s + 0.261·61-s + 1.61·65-s + 1.11·67-s + 0.885·71-s − 0.295·73-s + 0.678·77-s + 0.112·79-s + 0.402·83-s + ⋯ |
Λ(s)=(=(252s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(252s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
3.417232203 |
L(21) |
≈ |
3.417232203 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1−p2T |
good | 5 | 1−96T+p5T2 |
| 11 | 1−720T+p5T2 |
| 13 | 1−44pT+p5T2 |
| 17 | 1+1254T+p5T2 |
| 19 | 1+94T+p5T2 |
| 23 | 1+96T+p5T2 |
| 29 | 1−4374T+p5T2 |
| 31 | 1+6244T+p5T2 |
| 37 | 1+10798T+p5T2 |
| 41 | 1+12006T+p5T2 |
| 43 | 1+9160T+p5T2 |
| 47 | 1−25836T+p5T2 |
| 53 | 1+1014T+p5T2 |
| 59 | 1+1242T+p5T2 |
| 61 | 1−7592T+p5T2 |
| 67 | 1−41132T+p5T2 |
| 71 | 1−37632T+p5T2 |
| 73 | 1+13438T+p5T2 |
| 79 | 1−6248T+p5T2 |
| 83 | 1−25254T+p5T2 |
| 89 | 1−45126T+p5T2 |
| 97 | 1−107222T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.07997769004327497873864175886, −10.19905114445934005235328822324, −9.113586937523096138048897295155, −8.708036719053210425503338138769, −6.80923408949690372420803922762, −6.25776464124503790928344988874, −5.13878585087194986800969731221, −3.76771266103547017919565726086, −2.07592691154418043550096265874, −1.24359954126291028944787993055,
1.24359954126291028944787993055, 2.07592691154418043550096265874, 3.76771266103547017919565726086, 5.13878585087194986800969731221, 6.25776464124503790928344988874, 6.80923408949690372420803922762, 8.708036719053210425503338138769, 9.113586937523096138048897295155, 10.19905114445934005235328822324, 11.07997769004327497873864175886