Properties

Label 2-248430-1.1-c1-0-139
Degree $2$
Conductor $248430$
Sign $-1$
Analytic cond. $1983.72$
Root an. cond. $44.5390$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s − 8-s + 9-s + 10-s + 3·11-s + 12-s − 15-s + 16-s − 3·17-s − 18-s − 19-s − 20-s − 3·22-s − 6·23-s − 24-s + 25-s + 27-s − 3·29-s + 30-s − 8·31-s − 32-s + 3·33-s + 3·34-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.904·11-s + 0.288·12-s − 0.258·15-s + 1/4·16-s − 0.727·17-s − 0.235·18-s − 0.229·19-s − 0.223·20-s − 0.639·22-s − 1.25·23-s − 0.204·24-s + 1/5·25-s + 0.192·27-s − 0.557·29-s + 0.182·30-s − 1.43·31-s − 0.176·32-s + 0.522·33-s + 0.514·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(248430\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1983.72\)
Root analytic conductor: \(44.5390\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 248430,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 \)
13 \( 1 \)
good11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 + 5 T + p T^{2} \) 1.59.f
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 - T + p T^{2} \) 1.67.ab
71 \( 1 - 7 T + p T^{2} \) 1.71.ah
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.92153773650023, −12.71210780803504, −12.05822812160268, −11.60068462924419, −11.25726262215324, −10.76990871990233, −10.25124074497539, −9.693876545181262, −9.275091334217578, −8.986332872421110, −8.412450884727083, −7.946025329050881, −7.646240159789381, −6.895505953553717, −6.741332765586978, −6.015539791177450, −5.597290267481967, −4.776860384242395, −4.064002678099333, −3.971484493483150, −3.200600421365215, −2.662046177565016, −1.809222244304115, −1.719221766846456, −0.7034614961356102, 0, 0.7034614961356102, 1.719221766846456, 1.809222244304115, 2.662046177565016, 3.200600421365215, 3.971484493483150, 4.064002678099333, 4.776860384242395, 5.597290267481967, 6.015539791177450, 6.741332765586978, 6.895505953553717, 7.646240159789381, 7.946025329050881, 8.412450884727083, 8.986332872421110, 9.275091334217578, 9.693876545181262, 10.25124074497539, 10.76990871990233, 11.25726262215324, 11.60068462924419, 12.05822812160268, 12.71210780803504, 12.92153773650023

Graph of the $Z$-function along the critical line