Properties

Label 2-248430-1.1-c1-0-116
Degree $2$
Conductor $248430$
Sign $1$
Analytic cond. $1983.72$
Root an. cond. $44.5390$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 5-s + 6-s + 8-s + 9-s − 10-s + 5·11-s + 12-s − 15-s + 16-s − 2·17-s + 18-s − 2·19-s − 20-s + 5·22-s + 23-s + 24-s + 25-s + 27-s − 29-s − 30-s + 31-s + 32-s + 5·33-s − 2·34-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.353·8-s + 1/3·9-s − 0.316·10-s + 1.50·11-s + 0.288·12-s − 0.258·15-s + 1/4·16-s − 0.485·17-s + 0.235·18-s − 0.458·19-s − 0.223·20-s + 1.06·22-s + 0.208·23-s + 0.204·24-s + 1/5·25-s + 0.192·27-s − 0.185·29-s − 0.182·30-s + 0.179·31-s + 0.176·32-s + 0.870·33-s − 0.342·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(248430\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1983.72\)
Root analytic conductor: \(44.5390\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 248430,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(7.031077494\)
\(L(\frac12)\) \(\approx\) \(7.031077494\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 \)
13 \( 1 \)
good11 \( 1 - 5 T + p T^{2} \) 1.11.af
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 11 T + p T^{2} \) 1.59.al
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.86444789114202, −12.51568553828496, −11.97019579838540, −11.46496145317064, −11.24898036855194, −10.60519107475251, −10.16261462083003, −9.474379872118831, −8.991567570889541, −8.853052973391537, −8.072903958850992, −7.622550943325739, −7.157661864826226, −6.705425416252266, −6.072649320856287, −5.913247649197452, −4.897542237928564, −4.555251326824643, −4.000941895000560, −3.718106515253138, −3.116923355376886, −2.396957091734401, −2.035624713150768, −1.170208619198947, −0.6629443438565942, 0.6629443438565942, 1.170208619198947, 2.035624713150768, 2.396957091734401, 3.116923355376886, 3.718106515253138, 4.000941895000560, 4.555251326824643, 4.897542237928564, 5.913247649197452, 6.072649320856287, 6.705425416252266, 7.157661864826226, 7.622550943325739, 8.072903958850992, 8.853052973391537, 8.991567570889541, 9.474379872118831, 10.16261462083003, 10.60519107475251, 11.24898036855194, 11.46496145317064, 11.97019579838540, 12.51568553828496, 12.86444789114202

Graph of the $Z$-function along the critical line