Properties

Label 2-248430-1.1-c1-0-106
Degree $2$
Conductor $248430$
Sign $-1$
Analytic cond. $1983.72$
Root an. cond. $44.5390$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 5-s + 6-s − 8-s + 9-s + 10-s + 5·11-s − 12-s + 15-s + 16-s − 7·17-s − 18-s − 20-s − 5·22-s − 7·23-s + 24-s + 25-s − 27-s − 30-s − 10·31-s − 32-s − 5·33-s + 7·34-s + 36-s + 11·37-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 1.50·11-s − 0.288·12-s + 0.258·15-s + 1/4·16-s − 1.69·17-s − 0.235·18-s − 0.223·20-s − 1.06·22-s − 1.45·23-s + 0.204·24-s + 1/5·25-s − 0.192·27-s − 0.182·30-s − 1.79·31-s − 0.176·32-s − 0.870·33-s + 1.20·34-s + 1/6·36-s + 1.80·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(248430\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1983.72\)
Root analytic conductor: \(44.5390\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 248430,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 \)
13 \( 1 \)
good11 \( 1 - 5 T + p T^{2} \) 1.11.af
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 7 T + p T^{2} \) 1.23.h
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 - 11 T + p T^{2} \) 1.37.al
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 13 T + p T^{2} \) 1.59.an
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 15 T + p T^{2} \) 1.73.p
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 17 T + p T^{2} \) 1.89.r
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.90219818671975, −12.63774661375394, −11.79437926935408, −11.61774989701414, −11.42494668342478, −10.81545837121905, −10.33804099464452, −9.768745952068317, −9.412964225563298, −8.872566692817558, −8.478818215132792, −8.054220399245219, −7.235170883096217, −7.019447763182775, −6.575581624990818, −6.001853738683656, −5.658962530254727, −4.840263170561743, −4.246882573738393, −3.909563661392490, −3.437687418956980, −2.386604011366970, −2.036389173020471, −1.369183481767808, −0.6408677687136538, 0, 0.6408677687136538, 1.369183481767808, 2.036389173020471, 2.386604011366970, 3.437687418956980, 3.909563661392490, 4.246882573738393, 4.840263170561743, 5.658962530254727, 6.001853738683656, 6.575581624990818, 7.019447763182775, 7.235170883096217, 8.054220399245219, 8.478818215132792, 8.872566692817558, 9.412964225563298, 9.768745952068317, 10.33804099464452, 10.81545837121905, 11.42494668342478, 11.61774989701414, 11.79437926935408, 12.63774661375394, 12.90219818671975

Graph of the $Z$-function along the critical line