Properties

Label 2-244800-1.1-c1-0-136
Degree $2$
Conductor $244800$
Sign $1$
Analytic cond. $1954.73$
Root an. cond. $44.2124$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s + 6·11-s + 4·13-s + 17-s + 2·19-s − 9·23-s − 6·29-s + 10·31-s − 5·37-s − 3·41-s + 2·43-s − 6·47-s − 3·49-s + 9·53-s − 3·59-s + 7·61-s + 14·67-s + 15·71-s + 8·73-s − 12·77-s − 14·79-s − 3·83-s − 8·91-s − 16·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 0.755·7-s + 1.80·11-s + 1.10·13-s + 0.242·17-s + 0.458·19-s − 1.87·23-s − 1.11·29-s + 1.79·31-s − 0.821·37-s − 0.468·41-s + 0.304·43-s − 0.875·47-s − 3/7·49-s + 1.23·53-s − 0.390·59-s + 0.896·61-s + 1.71·67-s + 1.78·71-s + 0.936·73-s − 1.36·77-s − 1.57·79-s − 0.329·83-s − 0.838·91-s − 1.62·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 244800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 244800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(244800\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(1954.73\)
Root analytic conductor: \(44.2124\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 244800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.675418647\)
\(L(\frac12)\) \(\approx\) \(2.675418647\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
17 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.77374231235439, −12.37276023569572, −11.95624820259705, −11.40089977982212, −11.31252202500447, −10.45759055399617, −9.903410882594581, −9.728300024633802, −9.208912391700106, −8.671975540820368, −8.159519847923789, −7.894131809470739, −6.870210364895410, −6.699984469056470, −6.360165058845518, −5.681311622612458, −5.399410145941555, −4.432108011465900, −3.926697280967083, −3.699009989963879, −3.176550471569608, −2.359285701369835, −1.684463069779106, −1.185048055577711, −0.4782706746880503, 0.4782706746880503, 1.185048055577711, 1.684463069779106, 2.359285701369835, 3.176550471569608, 3.699009989963879, 3.926697280967083, 4.432108011465900, 5.399410145941555, 5.681311622612458, 6.360165058845518, 6.699984469056470, 6.870210364895410, 7.894131809470739, 8.159519847923789, 8.671975540820368, 9.208912391700106, 9.728300024633802, 9.903410882594581, 10.45759055399617, 11.31252202500447, 11.40089977982212, 11.95624820259705, 12.37276023569572, 12.77374231235439

Graph of the $Z$-function along the critical line