Properties

Label 2-244608-1.1-c1-0-118
Degree $2$
Conductor $244608$
Sign $-1$
Analytic cond. $1953.20$
Root an. cond. $44.1950$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·5-s + 9-s − 3·11-s − 13-s − 2·15-s + 5·17-s + 7·19-s − 6·23-s − 25-s + 27-s + 5·29-s + 8·31-s − 3·33-s + 10·37-s − 39-s + 4·41-s + 12·43-s − 2·45-s + 7·47-s + 5·51-s − 9·53-s + 6·55-s + 7·57-s + 3·59-s − 11·61-s + 2·65-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894·5-s + 1/3·9-s − 0.904·11-s − 0.277·13-s − 0.516·15-s + 1.21·17-s + 1.60·19-s − 1.25·23-s − 1/5·25-s + 0.192·27-s + 0.928·29-s + 1.43·31-s − 0.522·33-s + 1.64·37-s − 0.160·39-s + 0.624·41-s + 1.82·43-s − 0.298·45-s + 1.02·47-s + 0.700·51-s − 1.23·53-s + 0.809·55-s + 0.927·57-s + 0.390·59-s − 1.40·61-s + 0.248·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 244608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 244608 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(244608\)    =    \(2^{7} \cdot 3 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1953.20\)
Root analytic conductor: \(44.1950\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 244608,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 + 11 T + p T^{2} \) 1.61.l
67 \( 1 + 11 T + p T^{2} \) 1.67.l
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.20232691683673, −12.38083742510139, −12.25446217651576, −11.86292710403410, −11.32855652771474, −10.76602794894337, −10.16702673870840, −9.926417354420402, −9.415234181779028, −8.918567025237908, −8.181962086007924, −7.797448121663562, −7.641855655624423, −7.351361418503872, −6.369722344147795, −5.921829490993057, −5.496790060295541, −4.667555370524808, −4.433961090545492, −3.797087135557382, −3.209717387657612, −2.719829763516585, −2.400772538814545, −1.270107572393208, −0.9036766829636705, 0, 0.9036766829636705, 1.270107572393208, 2.400772538814545, 2.719829763516585, 3.209717387657612, 3.797087135557382, 4.433961090545492, 4.667555370524808, 5.496790060295541, 5.921829490993057, 6.369722344147795, 7.351361418503872, 7.641855655624423, 7.797448121663562, 8.181962086007924, 8.918567025237908, 9.415234181779028, 9.926417354420402, 10.16702673870840, 10.76602794894337, 11.32855652771474, 11.86292710403410, 12.25446217651576, 12.38083742510139, 13.20232691683673

Graph of the $Z$-function along the critical line