Properties

Label 2-244608-1.1-c1-0-104
Degree $2$
Conductor $244608$
Sign $-1$
Analytic cond. $1953.20$
Root an. cond. $44.1950$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s + 11-s + 13-s + 17-s − 5·19-s + 4·23-s − 5·25-s + 27-s − 3·29-s + 33-s − 8·37-s + 39-s − 10·41-s + 4·43-s + 7·47-s + 51-s − 5·53-s − 5·57-s + 9·59-s − 3·61-s − 13·67-s + 4·69-s + 11·71-s − 14·73-s − 5·75-s + 81-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s + 0.301·11-s + 0.277·13-s + 0.242·17-s − 1.14·19-s + 0.834·23-s − 25-s + 0.192·27-s − 0.557·29-s + 0.174·33-s − 1.31·37-s + 0.160·39-s − 1.56·41-s + 0.609·43-s + 1.02·47-s + 0.140·51-s − 0.686·53-s − 0.662·57-s + 1.17·59-s − 0.384·61-s − 1.58·67-s + 0.481·69-s + 1.30·71-s − 1.63·73-s − 0.577·75-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 244608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 244608 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(244608\)    =    \(2^{7} \cdot 3 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1953.20\)
Root analytic conductor: \(44.1950\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 244608,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 - T + p T^{2} \) 1.11.ab
17 \( 1 - T + p T^{2} \) 1.17.ab
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 + 5 T + p T^{2} \) 1.53.f
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 + 3 T + p T^{2} \) 1.61.d
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 - 11 T + p T^{2} \) 1.71.al
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.19819628524819, −12.67071448988666, −12.14594085664697, −11.87435523623690, −11.14890724487157, −10.79067426415242, −10.31162709351536, −9.844742999214600, −9.312338289254927, −8.790618794910213, −8.580336949870833, −7.978538993846532, −7.455820386334843, −6.977292775892176, −6.567243056557744, −5.886228471829935, −5.535788636444304, −4.768927834893601, −4.371598602410923, −3.684684227546768, −3.402984415223617, −2.725731855672152, −1.956541490829656, −1.715915301519756, −0.8239462931440832, 0, 0.8239462931440832, 1.715915301519756, 1.956541490829656, 2.725731855672152, 3.402984415223617, 3.684684227546768, 4.371598602410923, 4.768927834893601, 5.535788636444304, 5.886228471829935, 6.567243056557744, 6.977292775892176, 7.455820386334843, 7.978538993846532, 8.580336949870833, 8.790618794910213, 9.312338289254927, 9.844742999214600, 10.31162709351536, 10.79067426415242, 11.14890724487157, 11.87435523623690, 12.14594085664697, 12.67071448988666, 13.19819628524819

Graph of the $Z$-function along the critical line